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TRIPLE PRODUCT L-VALUES AND DIHEDRAL CONGRUENCES
FOR CUSP FORMS

NEIL DUMMIGAN AND BERNHARD HEIM

Abstract. Let p ≡ 3 (mod 4) be a prime, and k = (p + 1)/2. In this paper we
prove that a certain trace of normalised, rightmost critical values of triple product L-
functions, of cuspidal Hecke eigenforms of level one and weight k, is non-integral at
p if and only if the class number h(

√−p) > 1. We use the Bloch-Kato conjecture to
explain this, using “dihedral” congruences, modulo a divisor of p, for cuspidal Hecke
eigenforms of level one and weight k (e.g. p = 23, k = 12, g = ∆). Exploiting the
Galois interpretation of such congruences, we may produce global torsion elements
which contribute to the denominator of the conjectural formula for some L-value
contributing to the trace.

1. Introduction

Let Sk(Γ) be the space of cuspidal, elliptic modular forms of integer weight k with
respect to Γ = SL2(Z). Let f ∈ Sk(Γ) be a primitive Hecke eigenform with Satake
parameters αp(f), βp(f), normalized by αp(f)βp(f) = pk−1. We put

Ap(f) :=

(
αp(f) 0

0 βp(f)

)
.

The Rankin triple L-function L(f ⊗ g⊗ h, s) for primitive Hecke eigenforms f, g, h ∈
Sk(Γ) is given by the infinite product

(1.1)
∏

p prime

{
det

(
18 − Ap(f)⊗ Ap(g)⊗ Ap(h) p−s

)}−1
for Re(s) À 0.

The space of cusp forms Sk = Sk(Γ) of weight k on the upper half-space

H := {z = x + iy ∈ C | y > 0}
is a normed space with

(1.2) ‖ f ‖:=
√∫

Γ\H
f(z)f(z)Im(z)k−2 dz.
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Let

L̂(f ⊗ g ⊗ h, s) := ΓC(s) ΓC(s− k + 1)3L(f ⊗ g ⊗ h, s)

be the completed Rankin triple L-function with ΓC(s) := 2 (2π)−sΓ(s). It satisfies a
functional equation

L̂(f ⊗ g ⊗ h, 3k − 2− s) = −L̂(f ⊗ g ⊗ h, s).

In accord with Deligne’s conjecture [De],

(1.3) L̂(f ⊗ g ⊗ h, 2k − 2)alg :=
L̂(f ⊗ g ⊗ h, 2k − 2)

‖ f ‖2‖ g ‖2‖ h ‖2
∈ K×.

Here K is the totally real number field generated by the Hecke eigenvalues of f, g and
h. Note that the critical values for L(f ⊗ g ⊗ h, s) are taken at integers from k to
2k − 2. Our first result is the following:

Theorem 1.1. Let k be an integer such that Sk is non-trivial and p := 2k − 1 is a
prime. Let (fa)a be a primitive Hecke eigenbasis of Sk. Then we have:

(1.4)

dimSk∑

a,b,c=1

L̂(fa ⊗ fb ⊗ fc, 2k − 2)alg ∈ p−1Zx
(p)

if and only if the class number h(
√−p) of the imaginary quadratic field Q(

√−p) is
larger than one. If h(

√−p) = 1 then

dimSk∑

a,b,c=1

L̂(fa ⊗ fb ⊗ fc, 2k − 2)alg ∈ Z(p).

Here Z(p) is the localization of Z at p, and Zx
(p) its unit group.

Remark. We could replace L̂ by L here, since the gamma factors are units at p.

Example. Let ∆ be the unique primitive cusp form of weight 12 given by

∆(z) := e2πiz

∞∏
n=1

(1− e2πinz)24.

The special value of the Rankin triple L-function L̂(∆⊗3, s) at the critical value s =
22 may be deduced from the table at the end of [Mi], which confirms a numerical
prediction from [Z]. We have

(1.5) L̂(∆⊗3, 22)alg =
248 · 39 · 53 · 7

23 · 6912
.

The prime number 23 appears in the denominator since h(
√−23) = 3.
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In §2 we accomplish one main goal of this paper, namely to prove Theorem 1.1.
The proof uses pullback formulas for Siegel-Eisenstein series of degrees 2 and 3, and
explicit formulas for the Fourier coefficients of Siegel-Eisenstein series of degrees 1, 2
and 3, together with Garrett’s integral representation for the rightmost critical value
L(f ⊗ g ⊗ h, 2k − 2). The p in the denominator comes from the appearance of the
Bernoulli number B2k−2 in formulas for Fourier coefficients. The class number enters
through a congruence with a Bernoulli number (Lemma 2.1 below), apparently due to
Carlitz [C]. When the class number is 1, this causes the p to be cancelled. A peculiar
consequence of this congruence is that the class number can be expressed in terms of
triple product or symmetric square L-values. As an aside, this is observed in §3.
Our goal in the remainder of the paper is to link Theorem 1.1 with what the Bloch-
Kato conjecture on special values of motivic L-functions says in our special case. In
§5 we state the Bloch-Kato conjecture in the case of critical values of L(f ⊗ g⊗h, s).
After working out the relation between the Deligne period and ‖ f ‖2‖ g ‖2‖ h ‖2,
the product of Petersson norms, we find that the conjecture reads

L(f ⊗ g ⊗ h, t)

(2πi)u i3−3k ‖ f ‖2‖ g ‖2‖ h ‖2
=

∏
`≤∞ c`(t) #X(t)

#H0(Q, A(t))#H0(Q, A(3k − 2− t)) c(f)c(g)c(h)
,

where u = 4t + 3 − 3k. The various terms, all of which depend on f, g and h, are
defined in §5. If the Bloch-Kato conjecture is true, and if h(

√−p) > 1, then Theorem
1.1 implies that, in the case t = k (paired with 2k − 2 by the functional equation)
there should be some f, g and h such that the right-hand-side makes a contribution
to the trace that is non-integral at (a divisor of) p. Given that #X(k) is an integer,
there should then be some f, g and h such that the contribution of the other factors
on the right-hand-side is non-integral at p.
In §4 we recall from [DH] the significance of the condition h(

√−p) > 1. Using class
field theory it allows us to construct certain Galois representations, which can be
identified with the (mod p) representations arising from some cuspidal Hecke eigen-
forms of level 1 and weight k. These are the forms we shall take for f, g and h. In §7
we show that ordp(

∏
`≤∞ c`(k)) ≤ 0, and in §6 we show that the global torsion factor

#H0(Q, A(2k−2)) makes a non-trivial contribution to the p-part of the denominator.
The analysis of the p-part of cp(k) presents a technical challenge, since p = 2k − 1 is
smaller than the (degree) length 3k − 2 of the Hodge filtration of the triple product
premotivic structure. This is why we are only able to produce a bound.
This paper may be viewed as extending our work in [DH], from symmetric square
L-functions to triple product L-functions. If n ≡ 2 (mod 4) then L(Symnf, s) has
a critical value (its rightmost) at s = n+2

4
(2k − 2), and the construction of global

torsion from [DH] easily generalises. If n ≡ 3 (mod 4) then any n-fold tensor product
L-function (for weight k cuspidal Hecke eigenforms) has a critical value (again, the
rightmost) at s = n+1

4
(2k − 2), and the related construction of global torsion in this
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paper also generalises. For other n ≥ 1 the L-function in question does not have any
critical value at a multiple of (2k − 2). It is only for n = 2 and 3 that we know the
pullback formulas needed to evaluate the critical value. In any case, it seems that our
luck might run out beyond n = 3 for analysing Tamagawa factors.

2. Proof of Theorem 1.1

Let Hn be the Siegel upper half-space and Γn := Sp(2n)(Z) the Siegel modular group
of degree n. Then we put, for γ := ( a b

c d ) ∈ Γn,

γ(z) := (az + b)(cz + d)−1, j(γ, z) := det(cz + d).

We denote by Mn
k (Γn) the space of Siegel modular forms of degree n and weight k. By

Sn
k (Γn) we denote the subspace of cusp forms. To simplify notation we omit the index

n when it is equal to 1. Examples of Siegel modular forms are given by Eisenstein
series of Klingen type. Let r be an integer 0 ≤ r < n and

Γn,r :=

{( ∗ ∗
0n+r,n−r ∗

)
∈ Γn

}
.

Let k > n + r + 1 and f ∈ Sr
k(Γr). Then we recall the definition of the Klingen type

Eisenstein series En,r
k (f) attached to f (if r = 0 we take always f = 1).

(2.1) En,r
k (f, z) :=

∑

γ∈Γn,r\Γn

f(γ(z)∗) j(γ, z)−k,

where, if z = ( w1 w2
w3 w4 ) then z∗ := w4 ∈ Hr. If r = 0 then we obtain the classical Siegel

type Eisenstein series En
k (z). Let Φ be the so-called Siegel Φ operator. It is a linear

map from Mn
k to Mn−1

k . For n ≥ 2, Φ(En,r
k )) = En−1,r

k and ker(Φ) = Sn
k . We fix, for

every partition n1 + . . . + nl of n, the diagonal embedding of Hn1 × . . .×Hnl
into Hn:

(z1, . . . , zl) 7→



z1 0 0

0
. . . 0

0 0 zl


 .

For F ∈ Mn
k we have for the generalized Witt map

F |Hn1×···×Hnl
∈ Mn1

k ⊗ · · · ⊗Mnl
k .

Garrett [Ga1] obtained the following non-trivial spectral decomposition.

(2.2) En+m
k |Hn×Hm = En

k ⊗ Em
k +

∑

1≤r≤min(n,m)

dimSr
k∑

j=1

c
(r)
j En,r

k (f
(r)
j )⊗ Em,r

k (f
(r)
j ).
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Here f
(r)
j runs through a Hecke eigenbasis of Sr

k and c
(r)
j are some non-vanishing

algebraic numbers. Here we want to note that c
(r)
j only depends on f

(r)
j (and not on

n,m). Letting (fa)a be a primitive Hecke eigenbasis of Sk, we have

(2.3) E3
k |H2×H = E2

k ⊗ Ek +

dimSk∑
a=1

caE
2,1
k (fa)⊗ fa.

As in Section 2 and Theorem 2.3 of [He], we obtain

(2.4) E2,1
k (f)|H×H = f ⊗ Ek + Ek ⊗ f +

dimSk∑

a,b=1

la,b(f) fa ⊗ fb.

Here la,b(f) ∈ C a priori could be zero. Since we also have a formula for E2
k |H×H, and

already know that E3
k |H×H×H is symmetric in all three variables, we have:

E3
k |H×H×H = E⊗3

k +

dimSk∑
a=1

ca Ek ⊗ fa ⊗ fa

+

dimSk∑

b=1

cb fb ⊗ Ek ⊗ fb +

dimSk∑
c=1

cc fc ⊗ fc ⊗ Ek(2.5)

+

dimSk∑

a,b,c=1

la,b,c fa ⊗ fb ⊗ fc.

Let Bk be the k-th Bernoulli number. Then, though the complete decomposition
(2.5) is not in [Ga2], given (2.5) it is a direct consequence of the main theorem (1.3)
of [Ga2] (with the correct power of 2), that

(2.6) la,b,c = − 23−3k · k · (2k − 2)

Bk B2k−2

L̂(fa ⊗ fb ⊗ fc, 2k − 2)

‖ fa ‖2 ‖ fb ‖2 ‖ fc ‖2 .

It is well-known that the Fourier coefficients An
k(T ) of En

k (T half-integral positive
semi-definite matrix) are rational with bounded denominator. Please also note that
An

k(0) = 1 and
An−1

k (N) = An
k ( N 0

0 0 ) .

This follows from the already mentioned properties of the Siegel Φ-operator. We need
some further notation. We denote by ak(n) the n-th Fourier coefficient of the elliptic
Eisenstein series E1

k . Let A3
k[n,m, r] denote the finite sum of all Fourier coefficients of

E3
k with the entries n,m, r in the diagonal. Then a matrix T involved in this sum can

have rank 1, 2 or 3. In the case n = m = r = 1, we denote the related decomposition
by

A3
k(1, 1, 1) = A1 + A2 + A3.
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From formula (2.5) we obtain

A1 + A2 + A3 = ak(1)3 + 3 ak(1)
∑

a

ca +
∑

a,b,c

la,b,c.

In the case of degree n = 2 we have, from (2.2),

(2.7) A2
k ( 1 0

0 1 ) + 2 A2
k

(
1 1/2

1/2 1

)
+ 2A2

k ( 1 1
1 1 ) = ak(1)2 +

∑
a

ca.

This can be simplified to

(2.8)
∑

a

ca = A2
k ( 1 0

0 1 ) + 2 A2
k

(
1 1/2

1/2 1

)
+ 2ak(1)− ak(1)2

using the identity

(2.9)

(
1 0
−1 1

)(
1 1
1 1

)(
1 −1
0 1

)
=

(
1 0
0 0

)
.

A straightforward calulation also shows that A1 = 4ak(1). This leads to∑

a,b,c

la,b,c = A + B(2.10)

A = A2 + A3 − 3ak(1)
(
A2

k ( 1 0
0 1 ) + 2 A2

k

(
1 1/2

1/2 1

))
(2.11)

B = 4ak(1)− 6ak(1)2 + 2ak(1)3.(2.12)

Next we recall some facts used in Section 2.3 of [DH].

Lemma 2.1. Suppose that p := 2k − 1 is prime. Then

(2.13) ordp Bk = 0 and ordp B2k−2 = −1.

(From this it follows that ordpak(1) = 0 and ordpa2k−2(1) = 1.) Further we have

(2.14) ak(1) ≡ 2/h(
√−p) (mod p).

The first part is just an instance of the v.Staudt-Clausen theorem. The congruence,
which is of crucial importance since it introduces the class number, is from (5.2) of
[C].

Lemma 2.2. Let p := 2k − 1 be a prime and Sk be non-trivial. Then p|A.

Proof. We show more. We prove that p|A2, A3 and p|(A− (A2 + A3). First we start
with the divisibility of A3. It follows from Remark 5.4 in [Bö] that 2ak(1)a2k−2(1) is
the greatest common divisor of all A3

k(T ), T > 0. Hence for every T > 0 an m ∈ Z
exists, such that

A3
k(T ) = m2ak(1)a2k−2(1),

from which it follows from Lemma 2.1 that p | A3
k(T ). Hence p | A3.
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Next we determine all possible singular T . We say that two matrices T, S of suitable
sizes n,m are equivalent if An

k(T ) = Am
k (S). Let

(2.15) T =




1 a/2 b/2
a/2 1 c/2
b/2 c/2 1


 (a, b, c ∈ Z, 0 ≤ |a|, |b|, |c| ≤ 2).

Let T ≥ 0 as above. Then T is singular if and only if

(2.16) a2 + b2 + c2 − abc = 4.

If abc = 0 then two of the variables have to be zero and the third one equal to ±2.
For all 6 cases the value of the corresponding Fourier coefficient is equal to A2

k ( 1 0
0 1 ).

Now we assume abc 6= 0. Hence we have to look at the cases:

(2.17) a2 + b2 + c2 =





3 I

6 II

9 III

12 IV.

Let us consider each case by turn.

In case III), abc = 5, which is impossible given 0 ≤ |a|, |b|, |c| ≤ 2.

In case IV), abc = 8. There are 4 possible T , which are all equivalent to 1. Since they
have rank 1, they make no contribution to A2.

In case II), abc = 2. There are 12 possible T , which are all equivalent to

(2.18)




1 1 1/2
1 1 1/2

1/2 1/2 1


 .

But this matrix is equivalent to
(

1 1/2
1/2 1

)
.

In case I), abc = −1. There are 4 possible T , which are equivalent to

(2.19)




1 −1/2 1/2
−1/2 1 1/2
1/2 1/2 1


 .

Since


1 1 −1
0 1 0
0 0 1







1 −1/2 1/2
−1/2 1 1/2
1/2 1/2 1







1 0 0
1 1 0
−1 0 1


 =




0 0 0
0 1 1/2
0 1/2 1


 ,
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all 4 possible T are equivalent to
(

1 1/2
1/2 1

)
. Finally we obtain the quite useful formula

A2 = 6A2
k ( 1 0

0 1 ) + 16A2
k

(
1 1/2

1/2 1

)
.

Now we recall from [DH], Section 2.3, that p|A2
k

(
1 1/2

1/2 1

)
and p|A2

k ( 1 0
0 1 ). This proves

finally the lemma. ¤
Lemma 2.3. Let p := 2k − 1 be a prime and Sk be non-trivial. Then we have

(2.20) B ∈
{
Zx

(p) for h(
√−p) > 2

pZ(p) for h(
√−p) ∈ {1, 2} .

Proof. Recall that B = 4ak(1) − 6ak(1)2 + 2ak(1)3. Since 2, ak(1) ∈ Zx
(p) we have

B ≡ 0 (mod p) if and only if

(2.21) ak(1)2 − 3ak(1) + 2 ≡ 0 (mod p).

This congruence has two solutions: ak(1) ≡ 1 (mod p) and ak(1) ≡ 2 (mod p). By
(2.14), this is the same as to say that h(

√−p) ≡ 1 (mod p) or h(
√−p) ≡ 2 (mod p).

Now use the fact that 1 ≤ h(
√−p) <

√
p, to turn congruence into equality. ¤

Remark. It is well-known that the class number for a prime discriminant is always
odd. Nevertheless we have included the case h(

√−p) = 2 for maybe possible gener-
alization to Hilbert modular forms.

Now putting together Lemmas 2.2 and 2.3, (2.10), (2.6) and (2.13), we obtain Theo-
rem 1.1.

3. Recovering class numbers from special values

In the last section we discovered certain properties of the rational integer

(3.1) Lk :=

dimSk(Γ)∑

a,b,c=1

la,b,c.

It seems to be quite interesting that for almost all primes p ≡ 3 (mod 4) we can
extract the class number h(

√−p) from Lk for k = p+1
2

. Let (fi)i be a primitive Hecke
eigenbasis of Sk(Γ) then we have:

(3.2) Lk = −22−3kak(1)

∑dimSk

a,b,c=1 L̂(fa ⊗ fb ⊗ fc, 2k − 2)alg

ζ(3− 2k)
.

A careful analysis of the arguments in the last section shows that

(3.3) Lk ≡ 4ak(1)− 6ak(1)2 + 2ak(1)3 (mod p).
8



This leads to the formula∑dimSk

a,b,c=1 L̂(fa ⊗ fb ⊗ fc, 2k − 2)alg

ζ(3− 2k)
≡ −23k−1

(
ak(1)− 1

)(
ak(1)− 2

)
(mod p).

Carlitz’s congruence (2.14) turns this into a quadratic congruence for 1/h(
√−p),

leading to the following, given that h(
√−p) < p. (If a ∈ Zp and a is congruent to

a quadratic residue (mod p), then we denote by
√

a the square root in Zp with least
remainder on division by p, and for b ∈ Zp we denote by [b]p the remainder of b upon
division by p. Here, remainders are taken between 0 and p− 1.)

Proposition 3.1. Let p be a prime, p ≡ 3 (mod 4), and let k = p+1
2

. Let (fi)i be a
primitive Hecke eigenbasis of Sk(Γ). Then there exists an ε = ±1 such that

(3.4) h(
√−p) =




4

3− ε

√
1− 23−3k

PdimSk
a,b,c=1

bL(fa⊗fb⊗fc,2k−2)alg

ζ(3−2k)




p

.

Using (2.9) in [DH], we obtain in a similar, but somewhat simpler manner, the fol-
lowing.

Proposition 3.2.

(3.5) h(
√−p) =


 1

1 + (k−2)!
((k/2)−1)!

∑dimSk(Γ)
i=1

bL(Sym2(fi),1)alg

ζ(3−2k)




p

.

4. Dihedral congruences for cusp forms of level one

In the following theorem, p is not necessarily equal to 2k − 1.

Theorem 4.1 (Deligne). Let g =
∑∞

n=1 anqn be a normalised newform of weight
k ≥ 2 and character ε, for Γ1(N). Let K = Q({an}), and let p | p be some prime
of the ring of integers OK, with completions Kp and Op. There exists a continuous
representation

ρg = ρg,p : Gal(Q/Q) → GL2(Kp),

unramified outside pN , such that if ` - pN is a prime, and Frob` is an arithmetic
Frobenius element, then

Tr(ρg(Frob−1
` )) = a`, det(ρg(Frob−1

` )) = ε(`)`k−1.

One can conjugate so that ρg takes values in GL2(Op), then reduce (mod p) to get a

continuous representation ρg = ρg,p : Gal(Q/Q) → GL2(Fp), which, if it is irreducible,
is independent of the choice of invariant Op-lattice. The following was proved in §3 of
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[DH], and may be regarded as an instance of Serre’s conjecture [Se1] (Khare’s theorem
[Kh]).

Proposition 4.2. Let p ≡ 3 (mod 4) be a prime, and let k := (p + 1)/2. Suppose
that h(

√−p) > 1. Let F := Q(
√−p), and let H be the Hilbert class field of F . Let

τ : Gal(H/F ) → F×p be any non-trivial character. Then there exist a normalised,
cuspidal Hecke eigenform g = gτ =

∑∞
n=1 an qn for SL2(Z), of weight k, and a prime

p | p of Q({an}) such that ρg,p : Gal(Q/Q) → GL2(Fp) has dihedral image, factoring
through Gal(H/Q), and its restriction to Gal(H/F ) is equivalent to the sum of the
characters τ and τ−1.

Note that h(
√−p), the order of Gal(H/F ), is odd, so τ has odd order. Note also that

gτ = gτ−1 . The representation ρg,p : Gal(Q/Q) → GL2(Fp) was constructed by lifting
from Gal(H/Q) the representation induced from the character τ of Gal(H/F ).
Using a` ≡ Tr(ρg(Frob−1

` )) (mod p), one easily checks that a` ≡ 0 (mod p) for all

primes ` with
(

`
p

)
= −1. The case k = 12, p = 23, g = ∆ of this congruence

was discovered by Wilton [Wilt], and studied further by Swinnerton-Dyer and Serre
[SD, Se2, Se3] in the context of Galois representations. Swinnerton-Dyer also observed
the congruence in the case k = 16, p = 31, and its absence in the case k = 22, p = 43,
where h(

√−p) = 1.

Lemma 4.3. ρg,p|Gal(Qp/Qp) is a direct sum of the trivial character and the quadratic

character χ−p, and ap ≡ 1 (mod p).

Proof. First, since the principal ideal (
√−p) of OF splits completely in the Hilbert

class field H, ρg,p|Gal(Qp/Qp) is induced from the trivial character of Gal(Qp(
√−p)/Qp),

so is indeed a direct sum of the trivial character and the quadratic character χ−p.
This implies that ap 6≡ 0 (mod p), since if ap ≡ 0 (mod p) then a theorem of Fontaine
(proved in [E] as Theorem 2.6) shows that ρg,p|Ip would be the sum of the (k − 1)-
powers of the two fundamental characters of level two, which it isn’t. Now we know
that ap 6≡ 0 (mod p) (i.e. that g is ordinary at p), we may apply a theorem of Deligne
(proved in §12 of [Gr]), which implies that ρg,p|Gal(Qp/Qp) is reducible, with a unique

unramified composition factor taking Frob−1
p to ap. Since the trivial character is a

composition factor of ρg,p|Gal(Qp/Qp), we get ap ≡ 1 (mod p). ¤

Since ap 6≡ 0 (mod p) and ρg,p|Gal(Qp/Qp) splits, the main theorem of [Gr] implies that

g has a “companion form” of weight k′ = p + 1 − k. In our case, since p = 2k − 1,
k′ = k, and in fact g is its own companion. (The case k = 12, p = 23, g = ∆ is used
as an example in §17 of [Gr].)
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5. The Bloch-Kato conjecture

Let
∑∞

n=1 an(f)qn = f ∈ Sk(Γ) (necessarily for some even k ≥ 12) be a normalised
Hecke eigenform, K a number field containing Q({an(f)}) . Attached to f is a “pre-
motivic structure” Mf over Q with coefficients in K. Thus there are 2-dimensional
K-vector spaces Mf,B and Mf,dR (the Betti and de Rham realisations) and, for
each finite prime q of OK , a 2-dimensional Kq-vector space Mf,q, the q-adic reali-
sation. These come with various structures and comparison isomorphisms, such as
Mf,B ⊗K Kq ' Mf,q. See 1.1.1 of [DFG1] for the precise definition of a premotivic
structure, and 1.6.2 of [DFG1] for the construction of Mf . The q-adic realisation

Mf,q realises the representation ρf,q of Gal(Q/Q). For each prime number `, the

restriction to Gal(Q`/Q`) may be used to define a local L-factor, and the Euler
product is precisely L(f, s). If f, g, h ∈ Sk(Γ) are normalised Hecke eigenforms, let
Mf,g,h := Mf ⊗ Mg ⊗ Mh. Then similarly from Mf,g,h one obtains L(f ⊗ g ⊗ h, s).
Sometimes we omit the subscripts: M := Mf,g,h, with similar conventions for other
things below.
On Mf,B there is an action of Gal(C/R), and the eigenspaces M±

f,B are 1-dimensional.

On Mf,dR there is a decreasing filtration, with F j a 1-dimensional space precisely
for 1 ≤ j ≤ k − 1. The de Rham isomorphism Mf,B ⊗K C ' Mf,dR ⊗K C induces
isomorphisms between M±

f,B ⊗ C and (Mf,dR/F ) ⊗ C, where F := F 1 = . . . = F k−1.

Define Ω±
f to be the determinants of these isomorphisms. These depend on the

choice of K-bases for M±
f,B and Mf,dR/F , so should be viewed as elements of C×/K×.

Note that if we consider the twist Mf (j) (with 1 ≤ j ≤ k − 1), then (Mf (j))B =

(2πi)jMf,B, so (Mf (j))
+
B = (2πi)jM

(−1)j

f,B and the Deligne period of Mf (j), as the

determinant of the isomorphism from (Mf (j))
+
B⊗KC to (Mf (j)dR/F 0Mf (j)dR)⊗KC =

(Mf,dR/F jMf,dR)⊗K C, is (2πi)jΩ
(−1)j

f .

The eigenspace M+
f,g,h,B is 4-dimensional. On Mf,g,h,dR there is a decreasing filtration,

with F t a 4-dimensional space precisely for k ≤ t ≤ 2k−2. The de Rham isomorphism
Mf,g,h,B ⊗K C ' Mf,g,h,dR ⊗K C induces isomorphisms between M±

f,g,h,B ⊗ C and

(Mf,g,h,dR/F ′)⊗ C, where F ′ := F k = . . . = F 2k−2. Define Ω±
f,g,h ∈ C×/K× to be the

determinants of these isomorphisms, with respect to K-bases. The Deligne period of

Mf,g,h(t) is (2πi)4t Ω
(−1)t

f,g,h .
We shall choose an OK-submodule Mf,B, generating Mf,B over K, but not necessarily
free, and likewise an OK [1/S]-submodule Mf,dR, generating Mf,dR over K, where S
is the set of primes less than or equal to k. We take these as in 1.6.2 of [DFG1]. They
are part of the “S-integral premotivic structure” Mf associated to f . Actually, it will
be convenient to enlarge S so that OK [1/S] is a principal ideal domain, then replace
Mf,B and Mf,dR by their tensor products with the new OK [1/S]. These will now

11



be free, as will be any submodules and quotients. Choosing bases, and using these
to calculate the above determinants, we pin down the values of Ω± (up to S-units).
Setting Mf,g,h,B := Mf,B ⊗Mg,B ⊗Mh,B and Mf,g,h,dR := Mf,dR ⊗Mg,dR ⊗Mh,dR,
similarly we pin down Ωf,g,h (up to S-units). This is not a problem, as we can ensure
that S does not contain any prime we are interested in (specifically p = 2k − 1 if it
is prime).

Lemma 5.1. Ω±
f,g,h = 2(2πi)3−3kΩ+

f Ω−
f Ω+

g Ω−
g Ω+

h Ω−
h (up to S-units).

A more general period is calculated, up to K×, in [Bl].

Proof. Let e+
f and e−f be generators of M+

f,B and M−
f,B respectively. Let {xf , yf}

be an OK [1/S]-basis for Mf,dR, with yf generating the submodule F . Under the
isomorphism Mf,B ⊗K C ' Mf,dR ⊗K C we have

e+
f 7→ Ω+

f xf + η+
f yf , e−f 7→ Ω−

f xf + η−f yf ,

for some η+
f , η−f . Likewise for g and h.

To calculate Ω+
f,g,h we use the basis {e+

f e+
g e+

h , e+
f e−g e−h , e−f e+

g e−h , e−f e−g e+
h } for M+

f,g,h,B

and the basis of (Mf,g,h,dR/F ′) represented by {xfxgxh, yfxgxh, xfygxh, xfxgyh}. Hence

Ω+
f,g,h =

∣∣∣∣∣∣∣∣

Ω+
f Ω+

g Ω+
h η+

f Ω+
g Ω+

h Ω+
f η+

g Ω+
h Ω+

f Ω+
g η+

h

Ω+
f Ω−

g Ω−
h η+

f Ω−
g Ω−

h Ω+
f η−g Ω−

h Ω+
f Ω−

g η−h
Ω−

f Ω+
g Ω−

h η−f Ω+
g Ω−

h Ω−
f η+

g Ω−
h Ω−

f Ω+
g η−h

Ω−
f Ω−

g Ω+
h η−f Ω−

g Ω+
h Ω−

f η−g Ω+
h Ω−

f Ω−
g η+

h

∣∣∣∣∣∣∣∣

= (Ω+
f Ω−

f Ω+
g Ω−

g Ω+
h Ω−

h )2

∣∣∣∣∣∣∣∣

1 η+
f /Ω+

f η+
g /Ω+

g η+
h /Ω+

h

1 η+
f /Ω+

f η−g /Ω−
g η−h /Ω−

h

1 η−f /Ω−
f η+

g /Ω+
g η−h /Ω−

h

1 η−f /Ω−
f η−g /Ω−

g η+
h /Ω+

h

∣∣∣∣∣∣∣∣
.

Subtracting the second row from the first, and the fourth row from the third, then
expanding down the first column, we obtain

Ω+
f,g,h = −2δfδgδh(Ω

+
f Ω−

f Ω+
g Ω−

g Ω+
h Ω−

h ),

where δf := Ω+
f η−f − Ω−

f η+
f , etc. Now δf = Ω+

f η−f − Ω−
f η+

f is the determinant of the
isomorphism Mf,B ⊗K C ' Mf,dR ⊗K C (with respect to the chosen OK [1/S]-bases).
As on p.2 of [DFG2], ∧2Mf ' K(1 − k) (the right-hand-side being a twist of the
trivial pre-motivic structure), with ∧2Mf mapping to ηOK [1/S](1 − k), for some
integral ideal η. Since comparison maps are functorial, δf is the scalar (up to units in
OK [1/S]) giving the comparison map from K(1−k)B⊗K C to K(1−k)dR⊗K C with
respect to the natural integral bases. This is (2πi)1−k (c.f. 1.1.3 of [DFG1]). Hence
Ω+

f,g,h = −2(2πi)3−3kΩ+
f Ω−

f Ω+
g Ω−

g Ω+
h Ω−

h . For Ω−
f,g,h we just exchange the superscripts

+ and − everywhere. This changes only the sign of the result. ¤
12



We shall need the elements Mf,q of the S-integral premotivic structure, for each prime

q of OK . These are as in 1.6.2 of [DFG1]. For each q, Mf,q is a Gal(Q/Q)-stable Oq-

lattice in Mf,q. Taking tensor products, we get Mf,g,h,q, a Gal(Q/Q)-stable Oq-lattice
in Mf,g,h,q.
Let Af,q := Mf,q/Mf,q, and Af [q] := Af,q[q], the q-torsion subgroup. Similarly, let

Af,g,h,q := Mf,g,h,q/Mf,g,h,q, and Af,g,h[q] = Af,g,h,q[q]. Let Ǎf,g,h,q := M̌f,g,h,q/M̌f,g,h,q,

where M̌f,g,h,q and M̌f,g,h,q are the Kq-vector space and Oq-lattice dual to Mf,g,h,q and

Mf,g,h,q respectively, with the natural Gal(Q/Q)-action. Let Af,g,h := ⊕qAf,g,h,q, etc.
Following [BK] (Section 3), for ` 6= q (including ` = ∞) let

H1
f (Q`,Mq(t)) := ker

(
H1(D`,Mq(t)) → H1(I`,Mq(t))

)
.

Here D` is a decomposition subgroup at a prime above `, I` is the inertia subgroup,
and Mq(t) is a Tate twist of Mq, etc. The cohomology is for continuous cocycles and
coboundaries. For ` = q let

H1
f (Qq,Mq(t)) := ker

(
H1(Dq,Mq(t)) → H1(Dq,Mq(t)⊗Qq Bcrys)

)
.

(See Section 1 of [BK], or §2 of [Fo], for the definition of Fontaine’s ring Bcrys.)
Let H1

f (Q,Mq(t)) be the subspace of those elements of H1(Q,Mq(t)) which, for all

primes `, have local restriction lying in H1
f (Q`,Mq(t)). There is a natural exact

sequence

0 −−−→ Mq(t) −−−→ Mq(t)
π−−−→ Aq(t) −−−→ 0.

Let H1
f (Q`, Aq(t)) = π∗H1

f (Q`,Mq(t)). Define the q-Selmer group H1
f (Q, Aq(t)) to be

the subgroup of elements of H1(Q, Aq(t)) whose local restrictions lie in H1
f (Q`, Aq(t))

for all primes `. Note that the condition at ` = ∞ is superfluous unless q = 2. Define
the Shafarevich-Tate group

X(t) =
⊕

q

H1
f (Q, Aq(t))

π∗H1
f (Q,Mq(t))

.

Conjecture 5.2 (Case of Bloch-Kato). Suppose that k ≤ t ≤ 2k − 2. Then we have
the following equality of fractional ideals of OK [1/S]:

(5.1)
L(f ⊗ g ⊗ h, t)

(2πi)4t Ω
(−1)t

f,g,h

=

∏
`≤∞ c`(t) #X(t)

#H0(Q, Af,g,h(t))#H0(Q, Ǎf,g,h(1− t))
.

The Tamagawa factors c`(t) will be defined in the last section. It is more convenient
to use ‖ f ‖2 than Ω±

f , so we consider the relation between them. Bearing in mind §6
of [Hi], using Lemma 5.1.6 of [De] and the latter part of 1.5.1 of [DFG1], one recovers
the well-known fact that, up to S-units,

(5.2) ‖ f ‖2= ik−1Ω+
f Ω−

f c(f),
13



where c(f), the “cohomology congruence ideal”, is, as the cup-product of basis el-
ements for Mf,B, an integral ideal. (It is certainly trivial in those cases for which
dim(Sk) = 1.) Recall that by Lemma 5.1 above,

Ω±
f,g,h = 2(2πi)3−3kΩ+

f Ω−
f Ω+

g Ω−
g Ω+

h Ω−
h .

Via the duality Mf × Mf → K(1 − k), Ǎf,g,h,q ' Af,g,h,q(3k − 3). (Recall that
K ⊃ Q({an}), and here K(1− k) is a twist of the trivial premotivic structure over Q
with coefficients in K.) Therefore (5.1) becomes, for k ≤ t ≤ 2k − 2, the conjecture
that
(5.3)

L(f ⊗ g ⊗ h, t)

(2πi)u i3−3k ‖ f ‖2‖ g ‖2‖ h ‖2
=

∏
`≤∞ c`(t) #X(t)

#H0(Q, A(t))#H0(Q, A(3k − 2− t)) c(f)c(g)c(h)
,

where u = 4t + 3− 3k.

6. Global torsion

Let p ≡ 3 (mod 4) be a prime, and let k := (p + 1)/2. Suppose that h(
√−p) > 1.

According to Theorem 1.1,

dimSk∑

a,b,c=1

L̂(fa ⊗ fb ⊗ fc, 2k − 2)alg ∈ p−1Zx
(p).

Bearing in mind that the functional equation implies L̂(fa⊗fb⊗fc, 2k−2) = −L̂(fa⊗
fb⊗ fc, k), there must exist normalised, cuspidal Hecke eigenforms f, g, h for SL2(Z),
of weight k, and a prime p | p of K = Q({an(f), an(g), an(h)}) such that

L(f ⊗ g ⊗ h, k)

iπk+3 ‖ f ‖2‖ g ‖2‖ h ‖2

is not integral at p. Strictly speaking we do not know that the p-part of X(k) is trivial,
but it is at least integral. The Bloch-Kato conjecture then demands that, for some
f, g and h, the product of the other factors on the right-hand-side of (5.3), for t = k,
is not integral, at some p | p. One of the terms appearing in this denominator has
p-part H0(Q, Af,g,h,p(2k−2)). So the following proposition provides what is required,
when combined with the result from the next section, that ordp(

∏
`≤∞ c`(k)) ≤ 0.

Proposition 6.1. Let p ≡ 3 (mod 4) be a prime, and let k := (p + 1)/2. Suppose
that h(

√−p) > 1. Then there exist normalised, cuspidal Hecke eigenforms f, g, h for
SL2(Z), of weight k, and a prime p | p of K = Q({an(f), an(g), an(h)}) such that
H0(Q, Af,g,h,p(2k − 2)) is non-trivial.
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Proof. It suffices to find a non-zero element of H0(Q, Af,g,h[p](2k− 2)) (for some f, g
and h). Since 2k − 2 = p − 1 and the (p − 1)st power of the cyclotomic character is
trivial (mod p), this is the same as H0(Q, Af,g,h[p]). Choose a non-trivial character

τ : Gal(H/F ) → F×p and let g = h = gτ as in Proposition 4.2. Let f = gτ−2 . There
is a basis {xτ , yτ} for Ag[p] such that Gal(H/F ) acts on xτ and yτ by the characters
τ and τ−1 respectively, and Gal(F/Q) swaps the one-dimensional spaces spanned
by xτ and yτ . Similarly we have a basis {xτ−2 , yτ−2} for Af [p]. Now Af,g,h[p] =
Af [p]⊗Ag[p]⊗Ah[p], and the element we seek is xτ−2 ⊗ xτ ⊗ xτ + yτ−2 ⊗ yτ ⊗ yτ . ¤

7. Tamagawa factors

The goal of this subsection is to show that if p = 2k − 1 is prime, and p | p, then the
factor

∏
`≤∞ c`(k) contributes a non-positive power of p to the p-part of the right-

hand-side of (5.3) in the case t = k, with (eventually) f = gτ−2 , g = h = gτ as in the
previous section.
For a finite prime `, let H1

f (Q`,Mq(k)) be the inverse image of H1
f (Q`,Mq(k)) un-

der the natural map. (Recall that M = Mf,g,h.) Suppose now that ` 6= q. Now
H0(Q`, Mq(k)) is trivial, since the eigenvalues of Frob−1

` acting on Mq are alge-
braic integers with absolute value `3(k−1)/2. Hence, by inflation-restriction, we find
that H1

f (Q`,Mq(k)) ' (Mq(k)I`)/(1 − Frob`)(Mq(k)I`) is trivial, so H1
f (Q`,Mq(k))

is the torsion part of H1(Q`,Mq(k)). Again using the triviality of H0(Q`,Mq(k)),
we identify H1

f (Q`, Mq(k)) with H0(Q`, Aq(k)). This has a subgroup that is given

by (Mq(k)I`/Mq(k)I`)Frob`=id, whose order is the q-part of P`(`
−k), where P`(`

−s) =
det(1−Frob−1

` `−s|Mq
I`) is the Euler factor at ` in L(f⊗g⊗h, s) (strictly speaking, its

reciprocal). When ` is a prime of “good reduction”, so that Mq(k)I` = Mq(k) maps
surjectively to Aq(k), the subgroup is the whole of H0(Q`, Aq(k)), but in general we
define the q-part of the Tamagawa factor c`(k) to be the index of the subgroup. For
us, every ` is a prime of good reduction (i.e. Mq is unramified at `), because f, g and
h have level one, so we get the following straight from the definition.

Lemma 7.1. If ` is a finite prime, and q divides q 6= `, then the q-part of c`(k) is
trivial.

Note that the triviality of H0(Q`,Mq(k)) is equivalent to P`(`
−k) 6= 0. The Tamagawa

factor c∞(k) is, by definition, the order of the group

(MB(k)/MB(k))+

MB(k)+/MB(k)+
.

This is at worst a power of 2, so need not concern us.
It remains to consider the q-part of c`(k) in the case that q = `. It is known that
Mf,q,Mg,q and Mh,q are crystalline representations of Gal(Qq/Qq), as long as q > k.
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(Recall that the level N = 1 for us.) For a careful discussion, referring to [Fa],
see 1.2.5 of [DFG1]. It follows that Mq = Mf,g,h,q is a crystalline representation of

Gal(Qq/Qq). Furthermore, V(Mf,dR ⊗ Oq) = Mf,q, and likewise for g and h. (Note
that Mf,dR⊗Oq is really the crystalline realisation Mf,q-crys, or Mf,crys for short.) For
the definitions of the modified Fontaine-Lafaille functor V and the categories Oq-MFa

of filtered Dieudonné modules, see 1.1.2 of [DFG1].
For ` = q, Pq(T ) may be realised as det(1−φT |D(Mq)), where, for a q-adic represen-

tation V of Gal(Qq/Qq), D(V ) is the filtered φ-module (V ⊗Qq Bcrys)
Gal(Qq/Qq). Recall

that Pq(q
−k) 6= 0. It now follows from Theorem 4.1(ii) of [BK] that the Bloch-Kato

exponential map gives an isomorphism

(MdR ⊗Kq)/Filk(MdR ⊗Kq) ' H1
f (Qq, Mq(k)).

The norm of the q-part of the Tamagawa factor cq(k) is

µ(H1
f (Qq,Mq(k)))/|Pq(q

−k)|−1
q ,

where µ is the Haar measure of H1
f (Qq,Mq(k))) induced via the exponential map from

that measure on (MdR ⊗ Kq)/Filk(MdR ⊗ Kq) giving (MdR ⊗ Oq)/Filk(MdR ⊗ Oq)
volume 1. By µ(H1

f (Qq,Mq(k))) we really mean µ of its image in H1
f (Qq,Mq(k))),

multiplied by the order of its torsion subgroup. The following is a direct consequence
of Theorem 4.1(iii) of [BK].

Lemma 7.2. If q > 3k − 2 and q | q then the q-part of cq(k) is trivial.

(This 3k−2 is the length of the Hodge filtration of Mf,g,h,dR.) Since we are especially
interested in the choice q = p := 2k − 1 (when it is prime), this is not good enough
for our purposes, so we shall have to try harder, after a few preliminaries.
We assume that f is ordinary at q (as it is in our application with q = 2k − 1 and
f = gτ−2). Then by a theorem of Mazur and Wiles (a special case of Theorem 2 of
[Wile]), there is a filtration

(7.1) 0 −−−→ M1
f,q −−−→ Mf,q −−−→ M2

f,q −−−→ 0

of Oq[Gal(Qq/Qq)]-modules. Furthermore, we can identify the composition factors.

For a ∈ Oq, let Oq(a) denote the rank-one Oq-module on which the action of Gal(Qq/Qq)
is unramified, with Frobq acting as multiplication by a. For t ∈ Z let Oq(a; t) be its tth

Tate twist (i.e. multiply by the tth power of the q-adic cyclotomic character). Then
M1

f,q ' Oq(a
−1
q ) and M2

f,q ' Oq(aq; 1− k). (Note that our ρf,q is the dual of the one
in [Wile].) There is then a filtration

0 −−−→ M1
f,crys −−−→ Mf,crys −−−→ M2

f,crys −−−→ 0
16



of filtered Oq-Dieudonné modules, which transforms under V to (7.1). We have
M1

f,crys ' Oq[a
−1
q ] and M2

f,crys ' Oq[aq; 1 − k], where Oq[a; t] is a free rank-one Oq-
module, concentrated in degree −t, on which the Frobenius map φ acts as multipli-
cation by p−ta−1. It is such that V(Oq[a; t]) = Oq(a; t).
Tensoring with Mg ⊗Mh, we get filtrations

(7.2) 0 −−−→ M1
crys −−−→ Mcrys −−−→ M2

crys −−−→ 0

and
0 −−−→ M1

q −−−→ Mq −−−→ M2
q −−−→ 0,

with V taking the first to the second. Similarly we have filtrations

0 −−−→ M1
dR −−−→ MdR −−−→ M2

dR −−−→ 0

and
0 −−−→ M1

q −−−→ Mq −−−→ M2
q −−−→ 0

of non-integral structures.

Lemma 7.3. There is an exact sequence

0 −−−→ H1
f (Qq,M

1
q(k)) −−−→ H1

f (Qq,Mq(k)) −−−→ H1
f (Qq,M

2
q(k)).

Proof. There is an exact sequence

0 −−−→ (M1
dR ⊗Kq)/Filk −−−→ (MdR ⊗Kq)/Filk −−−→ (M2

dR ⊗Kq)/Filk −−−→ 0,

the dimensions of the three non-zero terms being 3, 4, 1. Applying the Bloch-Kato
exponential map and Theorem 4.1(ii) of [BK], we have an exact sequence
(7.3)

0 −−−→ H1
f (Qq,M

1
q (k)) −−−→ H1

f (Qq,Mq(k)) −−−→ H1
f (Qq,M

2
q (k)) −−−→ 0.

Also, since Pq(q
−k) 6= 0, H0(Qq,M

2
q(k)) is trivial. Therefore, we have an exact

sequence

(7.4) 0 −−−→ H1(Qq, M
1
q(k))

α−−−→ H1(Qq, Mq(k))
β−−−→ H1(Qq,M

2
q(k)),

which naturally maps (via “vertical” maps we shall call “θ”) to a similarly exact
sequence

(7.5) 0 −−−→ H1(Qq,M
1
q (k))

α−−−→ H1(Qq,Mq(k))
β−−−→ H1(Qq,M

2
q (k)).

Recall that H1
f (Qq, Mq(k)) is the inverse image of H1

f (Qq,Mq(k)), etc. We certainly
have a sequence

0 −−−→ H1
f (Qq, M

1
q(k))

α−−−→ H1
f (Qq,Mq(k))

β−−−→ H1
f (Qq,M

2
q(k)).

We just have to show that it is exact. Clearly α is injective and Im(α) ⊂ ker(β).
It remains to show that ker(β) ⊂ Im(α). Suppose that x ∈ H1

f (Qq,Mq(k)) and
17



β(x) = 0. By (7.4), x = α(w), for some w ∈ H1(Qq, M
1
q(k)). We need to show that

w ∈ H1
f (Qq,M

1
q(k)). Now α(θ(w)) = θ(α(w)) ∈ H1

f (Qq,Mq(k)), but βα(θ(w)) = 0,

so θ(w) ∈ H1
f (Qq,M

1
q (k)), by exactness of (7.3) and injectivity of α in (7.5). Hence

w ∈ H1
f (Qq,M

1
q(k)), as required. ¤

Substituting Mi for M and M i for M (including in the Euler factor det(1−φT |D(Mq))),
we may define Tamagawa factors ci

q(k), for i = 1, 2. Since Mq is crystalline,

det(1− φT |D(Mq)) = det(1− φT |D(M1
q )) det(1− φT |D(M2

q )).

With (7.2) and Lemma 7.3, this implies the following.

Lemma 7.4. ordq(cq(k)) ≤ ordq(c
1
q(k)) + ordq(c

2
q(k)).

If we could show that the restriction of β to H1
f (Qq,Mq(k)) surjects onto H1

f (Qq,M
2
q(k))

then we would have equality. The bound on q in the following proposition is just good
enough for our application to q = p = 2k − 1.

Proposition 7.5. Suppose that f is ordinary at q, and that q > 2k − 2. Then
ordq(cq(k)) ≤ 0.

Lemma 7.4 above reduces this to the following.

Lemma 7.6. (1) If q > k + 1 then ordq(c
1
q(k)) = 0.

(2) If q > 2k − 2 then ordq(c
2
q(k)) = 0.

Proof. (1) M1
q(k) = Oq(a

−1
q ; k)⊗Mg⊗Mh ' Hom(Mg,Mh(a

−1
q ; 1)), since the dual

of Mg is Mg(k − 1). As in the proof of Lemma 4.4 of [DH], we make a direct
application of the proof of Proposition 2.16 of [DFG1] (that part before the
statement of Lemma 2.17). This time we make the choices (in their notation)
D1 = Mg,crys,D2 = Mh,crys[a

−1
q ; 1].

(2) M2
q(k) = Oq(aq; 1) ⊗Mg ⊗Mh ' Hom(Mg, Mh(aq; 2 − k)). Again we apply

the proof of Proposition 2.16 of [DFG1], this time making the choices D1 =
Mg,crys,D2 = Mh,crys[aq; 2−k]. Note that for the bound on q, k is the length of
the Hodge filtration of Mg or Mh, and we add to this the difference in twists.
Thus, in case (2) for example, both Mg,crys (with graded pieces of degrees 0
and k − 1) and Mh,crys[aq; 2 − k] (with graded pieces of degrees k − 2 and
2k − 3) satisfy FilaM = M,Fila+q−1M = {0}, with a = 0.

¤
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[Ga2] P. Garrett: Decomposition of Eisenstein series: Rankin triple products. Ann. of Math. 125

(1987), 209–235.
[Gr] B. H. Gross: A tameness criterion for Galois representations associated to modular forms

(mod p). Duke Math. J. 61 (1990), 445–517.
[Hi] H. Hida: Congruences of cusp forms and special values of their zeta functions. Invent. Math.

63 (1981), 225–261.
[He] B. Heim: Pullbacks of Eisenstein series, Hecke-Jacobi theory and automorphic L-functions.

In: Automorphic Froms, Automorphic Representations and Arithmetic. Proceedings of Sym-
posia of Pure Mathematics 66, part 2 (1999).

[Kh] C. Khare: Serre’s modularity conjecture: the level one case. Duke Math. J. 134 (2006),
557–589.

[Mi] S. Mizumoto: Special values of triple product L-functions and nearly holomorphic Eisenstein
series. Abh. Math. Sem. Univ. Hamburg 70 (2000), 191–210.

[Se1] J.-P. Serre: Sur les représentations modulaires de degré 2 de Gal(Q/Q). Duke Math. J. 54
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