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Abstract

We produce several families of exact holomorphic differentials on a quotient X
of the the Ree curve in characteristic 3, defined by X : y? —y = 2% (27 — z) /F,,
(where go = 3%, s > 1 and ¢ = 3¢2). We conjecture that they span the whole space
of exact holomorphic differentials, and prove this in the cases s = 1 and s = 2, by
calculating the kernel of the Cartier operator.

§1 Introduction

For a nonsingular projective curve C over a field K, H°(C,Q!) is the K-vector space
of holomorphic (i.e. everywhere regular) differentials on C' (defined over K). Such a
differential is said to be ezact if it is of the form df for some function f € K(C). If f is
constant then df = 0. If f is non-constant then f necessarily has at least one pole, and
if K has characteristic 0 then df will have a pole in the same place. So in characteristic
0, there are no non-zero exact holomorphic differentials. But in characteristic p > 0,
where p** powers differentiate to 0, a pole whose order is a multiple of p might disappear
upon differentiation, and there can be non-zero exact holomorphic differentials. Inside
H°(C,Q), the subspace of exact holomorphic differentials is the kernel of the Cartier
operator €. It seems like a natural problem, given a curve C'/K with char(K) = p > 0,
to calculate this subspace. There are at least two further ways to motivate this problem.

First, dimy H°(C, 01)%0 = dimxHom(ay, Jo[p]), the so-called a-number of the Jaco-
bian Jo of C' [LO, Equation 5.2.8]. Here J¢[p] is the sub-group-scheme of p-torsion,

*N. Dummigan, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road,
Sheffield, S3 TRH, U.K. (n.p.dummigan@sheffield.ac.uk).
S. Farwa, COMSATS Institute of Information Technology, Wah Campus, G.T. Road, Wah Cantt,
Pakistan. (drsfarwa@gmail.com). T am thankful to COMSATS for the financial support for this research.
Keywords: Cartier operator, Ree curve, a-number.



and ay, ~ Spec(K[z]/aP) is the group-scheme of p*f-roots of 0. Note that each element
b € K gives an endomorphism of o, via z — bz, so Hom(ay,, Jo[p]) is naturally a K-
vector space. This a-number is an important invariant of Jo[p]. For instance, a+ f < g,

where f = dimg, (Jo[p](K)) is the “p-rank” of Jg. For more, see [FGMPW], [LO].

Second, suppose that K is finite, that E/K is an elliptic curve, and consider E as a
“constant” elliptic curve over the global field K(C'). Then morphisms from C to F,
defined over K, are identified with K (C')-rational points of E. It may happen that
is isomorphic to a subgroup-scheme of E[p], necessarily kerF' : E — E® _ the kernel of
the p"-power Frobenius morphism. In fact, this is always true when E is supersingular
(in which case the kernel of the Verschiebung V : E®) — E is also isomorphic to
ap). Then the Selmer group for the isogeny F' is identified with the flat cohomology
HY(C, ), which in turn is identified with H°(C, Q!)¢=0, [U, Proposition 3.3(b)]. For
a supersingular £/ K, an invariant differential w (on any isogenous curve) is exact, and
if #: C — EW® is a K(C)-rational point on E®) then the pullback 6*(w) is an exact
holomorphic differential on C. In this way E® (K (C))/F(E(K(C))) is embedded as
a subgroup of H°(C,Q")%=C, and the cokernel is the F-torsion in the Shafarevich-Tate
group of E/K.

Friedlander et. al. [FGMPW] calculate the space of exact holomorphic differentials
on the Suzuki curve C : y? —y = % (27 — z), with ¢ = 2¢2, where ¢y = 2°, 5 > 1, of
genus g = qo(q — 1), in order to determine the a-number of its Jacobian. The fact that
the characteristic is 2 ensures that the exact differentials are simply those of the form
f?dz, and one just has to find a basis for those f with divisor bounded such that f? dx
is holomorphic.

Gross [G] calculates the space of exact holomorphic differentials on the Hermitian curve
C:yit!l = gi4g /F 2, (where ¢ = pf is a prime power), of genus g = ¢(¢—1)/2, in order
to bound from below the order of the Shafarevich-Tate group, and thereby to improve
a bound for the sphere-packing density of the Mordell-Weil lattice E(K(C))/const =~
Hompg (Jo, E). (This free, finitely-generated abelian group has on it an even integral
quadratic form, given by twice the degree of a morphism. This construction of lattices
is due to Elkies.) The finite group quz acts on C/F by the automorphisms (z,y) —

(a?1z, ay), and this abelian group action decomposes H'(C, ) into one-dimensional
pieces (spanned by z™y" dy with m,n > 0 and m+n < g—2) on which the group acts by
distinct characters. The Cartier operator necessarily permutes these one dimensional
spaces, so to find its kernel one only needs to know which of these basis elements it
kills, so again the calculation is relatively simple.

In both cases the Jacobian J¢o is isogenous to EY for a certain supersingular elliptic
curve E. If Jo is isomorphic to EY9 (i.e. “superspecial”) then things are simple, as
Jolp] ~ E[p]?, so a = g, f = 0, and every holomorphic differential is exact. For the
Hermitian curve, Jo ~ E9 if and only if ¢ = p, while for the Suzuki curve it never
happens. (We are grateful to R. Pries for correcting an error in an earlier version.)
The fact that in general Jo is isogenous, but not isomorphic, to EY is at the root of
the subtlety of the situation.



The Suzuki curve enjoys automorphisms by the finite simple group Sz(q) =2Ba(q),
while the Hermitian curve is acted upon by a finite projective unitary group PUs(q).
The third family of Deligne-Lusztig curves (see [H]) comprises those acted upon by the
finite simple Ree groups 2G2(q), where q = 3¢2, with go = 3%, s > 1. The function field
of the Ree curve C'/F, is given by F,(C") = Fy(z, y1,y2), with

Yl —y1 =22 — ) (1)
ys —y2 = 2P (yf — ). (2)

The genus of C’ is g = %qo(q —1)(¢ + qo + 1), and it has 1 + ¢* F,-rational points,
including one point at infinity. Let X (of genus %qo(q — 1)) be the non-singular model
of the function field of the affine curve defined by (1). It is a quotient of C’/F,, via the
map 7 : C' — X such that (z,y1,y2) — (2,y1). From now on, for the sake of simplicity
we will replace y1 by y, so (the function field of) X is defined by the equation

Y-y = a®(a — a). (3)

We seek the exact holomorphic differentials for the quotient X rather than for the Ree
curve itself, since it seems to be a more tractable problem. (We are grateful to the
referee for pointing out that for the Ree curve, even an explicit basis for H°(C’, Q1) is
not known.) Furthermore, X is a direct analogue of the Suzuki curve, being defined
by an equation that looks the same. For both X and the Suzuki curve there is an
action of F, by (z,y) — (ax,a®ty), but unlike the Hermitian case, this does not
decompose H°(X, Q') into one-dimensional eigenspaces. Despite this, the Suzuki curve
may be dealt with fairly easily because the characteristic is only 2. The source of the
extra difficulty in characteristic 3 is identified in Remark 1, in Section 3. For more on
quotients of X, see [CO1, CO2].

Conjecture 1.1. Let g9 = 3°%,q = 3q(2), with s > 1, and let X/F, be a complete
nonsingular model of the curve y? —y = z%(x% — x). The dimension of the space
HO(X, QN0 of exact holomorphic differentials on X, is

2
d.= 2

1
T (143 +9) + 5 (11g3 +9).

Theorem 1.2. d is a lower bound for the dimension of HO(X, Q) (i.e. for the
a-number of the Jacobian of X ), for all s > 1.

Theorem 1.3. In the cases s = 1 and s = 2, d is equal to the dimension of H°(X, QI)QZO.

We should make some remark on one of the motivating problems. The zeta function of
X/Fq is
(1 + 3qot + qtz)%(qfl)(l + qt2)qo(q71)/2
(1-8)(1—qt) '

Let E1, Eo/F, be elliptic curves with zeta functions

(1 + 3qot + qt?) and (1+ qt?)
(1-t)(1—qt) (1=t —gqt)’



respectively. Letting L; = Homg (Jx, E;), for i = 1,2, we find that rank(L;) = 2qo(q —
1) and rank(Lg) = go(¢ — 1), and that Jx is isogenous to Eilo(q_l) X Ego(q_l)/z. This
isogeny is not an isomorphism, and for s = 1 or 2 a simple reason is that our calculations
show that a # ¢. In what follows, we omit details, but see the proofs of Propositions
11.11 and 14.10 of [G] for the method by which ranks are calculated, minimal norms
bounded from below and determinants bounded from above. Note that for the refined
upper bound for the determinant of the lattice, a lower bound for dimH%(X, Q!)*=0
is required, which is prgcisely what we have. Let the centre density of a lattice L of
density divided by the volume of a unit n-dimensional sphere. For Lp, for s = 1 we
have n = 156 and find logy(d) > —80.9, while for s = 2 we have n = 4356 and find
log,(d) > 710. For comparison, looking at records for known dense lattices in nearby
dimensions in Table 1.3 of [CS], for n = 150, log,(d) = 113.06 and for n = 4098,
logy(6) = 11279. For Lo our bounds are even worse compared to record known lattices.
Still, it seems to be an interesting problem to determine invariants of these lattices. In
the case of the Hermitian curve, the precise determinants are calculated in [D1], while
the structure of the Shafarevich-Tate group is obtained in [D2].

rank n be ¢ := where min is the minimal norm. This is the sphere-packing

In Section 2 we introduce useful functions u and v on X, and find a basis for the space
of holomorphic differentials on X, comprising certain elements of the form z%y u‘v? dz,
with 0 < b < 2 and various restrictions on the other exponents. In Section 3 we
introduce the Cartier operator, and calculate its action on the 81 differentials of the
form w = z®yPurv® dr with 0 < a, 8,7, < 2. Since €(f3w) = f€(w), this determines
which of our basis elements are exact. In Section 4 we prove Theorem 1.2 by producing
as many exact holomorphic differentials as we can. In Section 5 we consider a natural
action of the group F; on H 0(X,0Y), and show that the eigenspaces are of dimensions
3‘107;:1. The Cartier operator permutes these eigenspaces, so we may consider its kernel
on each separately. In Section 6, we prove Theorem 1.3 by calculating these kernels
in the cases s = 1 and s = 2. Throughout the paper, we work over K = F,, but the
calculations look exactly the same over any extension.

We thank the anonymous referee for their thoughtful reading, and their help in improv-
ing both the organisation and the substance of this paper.

§2 The holomorphic differentials on X

Recall that X /I, is a nonsingular projective model of the affine curve y¢ —y = 2% (27—
r), where gg = 3° and ¢ = 325t 5> 1.

Proposition 2.1. X/F, is irreducible with a single point at infinity (i.e. in the com-
plement of the affine curve), denoted by Pu. The rational functions on X/F,, defined

by
3qo+1 _ 2,390 340

l,z,y,u==x Y30 and v = 22y —y



are reqular on X \ {Px}. At Py, the pole orders of these functions are
—orde(1) =0, —ords(z) =¢, — ordes(y) = ¢+ qo

—ordeo(u) = ¢+ 3qp, — ordeo(v) = 2¢ + 3qp + 1.

The element =+ is a uniformizer at Px.

We omit the proof, since it is elementary, and essentially identical to that of Lemma

1.8 of [HS].

The pullback of u to the Ree curve C” is among the functions defined by Pederson [P],
who calls it wy. (All rational functions on C’ that do not involve yo may be considered
functions on X.) We have had to introduce v here for our purposes, but it is analogous
to the function on the Suzuki curve denoted f;424,+1 by Hansen and Stichtenoth [HS].

From the above definitions of u and v, one can easily verify the following relations in
Fq(X):

v =2?u+v; (4)
u = gty )
v = 20y — . (6)

Proposition 2.2. The curve X has genus g = %qo(q —1). The differential dz has
divisor div(dz) = (29 — 2) P.

Proof. If (o, B) € X(F,) \ {Px}, then S is one of the g roots of the equation
Yyl —y=a?(! — a).

If h(y) == y? —y — a?(a? — «), then h and Z—h have no common roots, so all the roots
of y? —y = a®(a? — a) are distinct. Thus we have ¢ distinct points for which (z — «)
is zero. But —orde(z — o) = —ords () = g, so all of these zeros are simple zeros, and
hence

ord(q, gydz = ord(y g)d(r — a) = 0,

showing that dz has no zeros on X (F,) — {Px}. Since deg(div(dz)) =2g — 2,
div(dx) = (29 — 2) Px. (7)

Now we find the genus. From v = 22y3% — ¢3% we get

dv = 2zy>®dx
= ordeo (dz) = ordes (dv) — orde () — orde (y2%°). (8)
Since —ords(v) is coprime to 3, —ords(dv) = —ords(v) + 1 = 2g + 3go + 2. Putting

this in (8) gives
orde (dz) = 3qo(qg — 1) — 2. 9)



But (7) shows that ords(dz) = 29 — 2. Comparing with (9) gives

3
= — — 1
g qu(q )

Define a set I of indices (a,b,c,d) € Z* by the following conditions:

1. a,b,c,d > 0.
2.a+b+c+2d <3q0— 1.

3. Ifa+b+c+2d=3q — 2 then 0 < ¢ < 2qp — 2. Writing ¢ = 2gp — 2 — i, where
0 < i < 2qp— 2, either (i) b+3d < 2+ 3i and d < & or (ii) b+ 3d = 2+ 3i and
0<d<q—2.

4. fa+b+c+2d =3¢y—1 then 0 < ¢ < gg—2. Writing ¢ = gop—2—7, b+3d < 2+3j.

Lemma 2.3. The differential x%yu‘v? dx is holomorphic if and only if (a,b,c,d) € I.

This can be checked using Propositions 2.1 and 2.2

Proposition 2.4. Define J = {(a,b,c,d) € I | 0<b<2 and0<c,d<qy—1}. Then
{z%tuv?dx | (a,b,c,d) € J} is a basis for HO(X, Q).

Proof. The holomorphic differentials z%y*uv?dz, for (a, b, c,d) € J, have distinct orders
at Pso. (See the proof of Proposition 3.7 of [FGMPW], which is the characteristic 2
analogue.) Hence they are linearly independent. If one counts the elements of J,
there are exactly g of them, hence the corresponding differentials must form a basis for
HO(X,Qb. O

§3 Exact differentials and the Cartier operator

Let K be a field of characteristic p > 0, and C'/K any nonsingular projective curve. We
will use the (non-linear) Cartier operator €, which maps the space Q¢ of meromorphic
differentials on C' to itself.

Proposition 3.1. Some of the properties of the Cartier operator are as follows [S,
Section 10].
(1) If v is not a p'™ power in the function field K(C), then every f € K(C) can be
expressed as

F=1+ v+ .+t (10)

for suitable f; € K(C). We define

C(fdv) = fp_1dv. (11)



(2) € is well-defined, independent of the choice of v.

(3) € is additive: €(w1 + w2) = C(w1) + C(w2) for all wi,ws € Q¢
(4) For any differential w on C and g € K(C), €(gPw) = g€(w).
(5) €(w) = 0 if and only if w is exact.

Proposition 3.2. The exact meromorphic differentials on X/Fq are precisely those of
the form

w=(f3+ fix)dz, for fo, fi € Fq(X). (12)

Proof. 1t is clear that x is not a cube in Fy(X), as if it were then so would be y, by
(3), so every function in F,(X) would be a cube, which is not true of course, as F,(X)
is not perfect. (Alternatively, as suggested by the referee, we can see from Proposition
2.1 that the pole order of v is not divisible by 3.) Now from Proposition 3.1(1) we can
write every function f € Fy(X) as

f=f+ flz+ fia?, (13)

and €(f dx) = fadx, so by Proposition 3.1(5), w = fdx is exact if and only if it is of
the form
w = (f3+ fir)dx.

(Observe how one can “integrate” such a differential without trying to divide by zero.)
O

Remark 1: There is a possibility that cancelation of poles takes place between the
two terms fg’ dz and fxdr. The difficulty this causes, in determining which exact
differentials are holomorphic, does not arise in the characteristic 2 case, where there is
only one term (f& dv) in the expression for an exact differential. To find a basis for the
exact holomorphic differentials on the Suzuki curve, one simply takes { fg dx}, where
fo runs through a basis for £((g — 1)Ps) = {f € K(C)|div(f) > —(9 — 1) P }-

Recall (from Proposition 2.4), a basis for the space of holomorphic differentials on
X, involving certain 2%y u‘v%dz. Each is a cube times one of the 81 things given by
z®yPurvlde, with 0 < o, B, 7, § < 2. So if we know how the Cartier operator applies
to these 81 differentials then we know how it applies to any element in the basis.

Proposition 3.3. &(z*yuv?dz), with 0 < o, B, 7, § < 2, is given by Table 1 below.

w/dx C(w)/dx
1 1 0
2 0
3 Y 0
4 U 0
290 90 a0
5 v r3 u3 +0us
6 z? 1
7 y? xz%




10
11
12

13
14
15
16

17
18

19
20
21
22

23
24

25
26
27
28

29
30

31
32

33
34

35

36
37

38
39

40
41

42
43
44
45
46

599

499 299 290 g a0 2qg

'3 U3 —xr 3 us vs +vs3
1»2110+2+:L=110+1y+y2

—r3 us3 vs
290 11 90 0 4
4 E] V3 + a3 yus
4q9 a0 2q9 ) 299 240

3

5a0 4 a0
r3 yus +axPyvs
499 o] 40 4q

—xr 3 yv? + us3




47
48

49
50
o1
52
93
o4
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81

Tyv?
ruv?
Yyuv
TYUv
2y%u
Ty v
2yu?
?u?v
2yv?
T uv
ry?u?
y*uv
zyv?
yiuv
zu’v?
yuv
r2yuv
ry?uv
ryuv
ryuv?
22y
Téy“v
Teucv
Yy utv
2y%uv
2?yuv
2yuv
zy?uv
zy?uv

zyu’v?

2920

2y%uv
2290202
ry?ue?

x2y2u2v2

499 249 240 40 L0} 2
—x73 Tyt Tlys v fasy? —zus

g0ty 4 2% 22 4 zu

490 o 240 290 40 2 41 40
—xr3YyY"+xr3 yus v +x3 Uu—yus
499 20 2 0 40
—x73 Tlys P yus —2s yous
290 220 2
€T 3 y—ua v 3
47 9 40 299
r3 T Tusvs tyus
440 290 290 40 40 240
T3 Yy+xr3 U3 v —u3 V3
499 240 299 0 9 290
r3 yus —xr3 yus v +yv s
490 2 a0
273 205 4 a0tlyys — s Hlyes — g2

2qp
v 3

2qq
v 3

say i W 2 4 g %
x3 Tlyus 40t yes — 23 y2us —yPus

Table 1: The Cartier Operator




Proof. In order to apply the Cartier operator, we first express each f = az®yPuv?,
with 0 < a, 8, 7,0 < 2, in the form f = f3 + fPz + f32?. For this recall (5) and the
definitions of v and v:

y=u? — g% qg; (14)
u = 23 g — 3%, (15)
v =3P g% — 30 (16)

Using these relations, we can express all of the above 81 monomials in the form

f=15+ fiz+ fia®.

For 1 and z, it is obvious that fi = 0, therefore €(dzr) = €(z dx) = 0. Similarly from
(14),

g0

ydr = [(u®)3 — (2% )3 2] da. (17)

In the above equation fy = us and fi= mq?o, while fo = 0, so consequently €(ydx) = 0.
Similarly, C(udz) = 0. Also, (16) shows that

vdr = [(—u®)3 + (y%o)d 2% dz. (18)

Thus fo = y%o, so €(vdr) = y%o dx, which shows that v dx is not exact. However if we
consider zv dx, then from

rvdr = [(a:yq?o)?’ — (u®)3 z] de, (19)

it is clear that fo = 0, therefore €(zvdx) = 0, so zv dz is an exact differential.
We give just one more complicated example to illustrate how the results in the table
were obtained. We show how to calculate entry 35.

From (14) and (15), we have

y2u2dx - [$7¢Io+3 w0 4 g5%0+3 y3q0 + yGQO UQQO] dr
+ [$840+3 + 340 y3(Io 290 4 g yﬁqo qu]x dx

+ [quo 1220 + a0 y3qo u® 4 7290 quo] 22dr.

From the above equation, f3 for y?u? is

2q9

2 4
5" 5 s g3,

f3 =0 us +as yPu

u‘g

Hence ) I s " o
Cy“udr) = [z u3 +273 yPus + a3 y*“P]d. (20)
The above expression involves y% dz and y?%dz, which are not in the basis for H°(X, Q')

in Proposition 2.4, so we need to replace them using (4):

y3 = 2%u +v
0

= ()T = (2Putv)
=y = (2%u)F + (v)

g

=}

w‘g w‘

(21)

10



Putting these values in (20), we have

290 490 490 , 240 40 % 240 , 4dg 290 290 40 99 240
C(y2ulde) =[z*®u™s + 273 us (x5 us +vs)fas (x3 us —x3 usvs +vs)de
290 299 490 99 g0 299 490 40 90 240 249
=[z?Pyus 420y +x3 us vs +2°Pus —x 3 usvs fx3 vs|dr
2q0 2q0

The table shows in particular that among the 81 differentials considered, the only
exact ones are dx, x dx, ydx, udx and xvdz. The exactness of these differentials may
be verified directly: dr = d(z), rdr = d(—2?), ydr = d(—u®z — x92?), udr =
d(z*0zy — v®z) and rvdr = d(z3y®x + u?2?). The expressions for ydx, udr and
zv dx, may be verified easily using (4), (5) and (6).

84 Proof of Theorem 1.2

We define certain classes Ai, Bi, Ci, Di of exact holomorphic differentials. That
denoted “gdz” consists of all differentials f3g dx with f = z®u1%; 0 <, § < L1,
with whatever further condition on «, v and ¢ is necessary to make the differentials
w = f3gdx holomorphic. We will make these conditions explicit later, while counting
the number of differentials in each of these classes.

A1l: dzx,

A2: xdzx,
A3: ydr,
A4: udzx,
A5: zvdex.

Although 33dx is an exact holomorphic differential, it is not in the basis in Proposi-
tion 2.4. However, from (4) we may express it in terms of the basis differentials as
y3dr = (x?u + v)dx. This illustrates the fact that an exact differential may be a lin-
ear combination of non-exact basis elements. Similarly we need to express each of the
following exact holomorphic differentials in terms of the basis elements:

ufdz, w2 dg, vdx
vde, yPu®dr, y3uPdr, yPode
yOdx, ySutdz, ySuP0dx, ySvda.
In fact, we need to look at all of the above multiplied by each of 1, z, y, u and zv (55
possibilities). Although y°dz is an exact holomorphic differential, we do not consider

y?dzx, since
ydz = 28u3de + vidx,

11



which is a linear combination of differentials in class A1l. In a similar way we can ignore
the differentials involving the higher cubic powers of y. Thus we obtain the following
classes.

B1: y3dz = (2%u + v)dx,

B2: y3ydr = (2?yu + yv)dx,

B3: y2udr = (z?u? + uv)dx,

B4: y?zvdr = (23uv + zv?)dz,

B5: 3%dz = (23zu® — 2%uv + v?)dx,

B6: ySydr = (x3zyu? — 22yuv + yo?)dz,

BT7: u®xdr = (2922 — zy)dz,

B8: u®ydr = (z%zy — y?)dx,

B9: uudr = (z®zu — yu)dz,

B10: uzvdr = (z%°x%v — zyv)dz,

B11: u9y3ydr = (29 3yu + x9zyv — 2%y%u — y?v)dx,

B12: vyPudr = (2 3u? + 2P 2uv — 2%yu? — yuv)dz,

B13: vyizvdr = (2 3zuv + 202%0? — 3yuv — zyv?)dz,

B14: u%ySydr = (290322yu? — 2903yuw + zP2yv? — p3zy?u® + 22y uw — y?0?)da.
Similarly with the help of the remaining possibilities (among those 55, stated earlier),
we define some other classes of exact holomorphic differentials as follows.

youdr = (2Pudz — 2?uv + w?)dz

= p3udadr — (x*uv — uwv?)d.

Since x3udzdz is already on A2, a new list of exact differentials is (denoted by)
yOudr =C1: (2%u’v — wv?)dz.
Note that discarding z3u3xzdz reduces the pole order, allowing more possibilities for f3.

Similarly we just state the other such classes. All of the the following classes are
obtained by discarding one (previously defined) differential, except for C14, which is
obtained by discarding two differentials, belonging to B8 and C4.

wrdr = C2: (z%x2y + xy?)de,
wudr = C3: (2°Pv — 2%zyu — yu)dz,
vOxdr = C4: (%>
-

vPudr = C5

— zu)dz,
2q0—3

x%y

x zyv — 203222 — 2073920 + u?)dz,

12



202220 + 29y%0 — 23u? — zuv)dz,

qo+3

vOzudr = C6:

vutrdr = C7:

yPutouds = C8:

y*oludr = C9:
PP rvdr = C10:

x
x
(
yuludr = C11: (z293u%y — 2%zuv? — 22yu’v + yuv®)de,
(
(
(z

23 zyu 4+ 29230 + 239%u 4 zy®v)dz,

(2290 2% 4 22002 — 29030 — xqoa:yuv — g2 y u? — y*uv)de,
( 2q°_31:yv v — 2Pzy?u? + 2P 322200 — 2073y%0? £ uda? + uPo)de,

zytu? — xP 2?2 + 290y%0? — 23ud2? + 23 — zuv?)de,

240 yuv + x

x(I0+3

y6u2q°xd:c = C12: xq°+6 qo”xyuv + 290 22 yv + m3x2y2u2 w3y2uv + xy2112)dm
youOudr = C13:
yovuds = C14:

zu?v — 220 22u0% + 203 yuy — 2P zyun? + 2?y2uo — yPuv?)de,

— 2?0 yun? — udz?v + u?o?)d.

Among the 55 possibilities stated earlier, we may discard the remaining ones, as they
are linear combinations of previously determined classes, e.g. y3zdz = (z3u + 2v)dr,
which is a linear combination of two exact holomorphic differentials already present in
A4 and AS5.

Recall from Proposition 3.2 that the ezact differentials on X are of the form

w=(f3+ fiz)dz, for fo, f1 € Fy(X).

There is a possibility that both fddr and f{xdx are not holomorphic (e.g. f;i =
ryPiurivd with oy + B + v + 20; > qo — 1) but that cancelation of poles allows
the sum to be holomorphic. This motivates us to consider the non-holomorphic exact

differentials
w0y dy, 2490 de, 1,290 4)%0 de, 1909290 dz, 12490 290 dz,
yiudov®de,  Po?0dr,  yPuov®dr,  Pulor®Odr,  yPutu?0dy,

YPoutovdr,  y90®0dr,  ySutviodr, yPu®v®dr,  ySutu®dy,

and similarly each of the above multiplied by z, (hence 30 possibilities altogether).
Among these possibilities, here we state only those which lead us to some new classes
Di’s of exact holomorphic differentials. The rest can be discarded, as they lead only to
linear combinations of Ai’s, Bi’s, Ci’s and Di’s.

We begin with u% v®xdzx.

u® P gdr = (3P x%y — 22©zy? — 2P 2%y + ryu)de

= 220 (zP 32y + zy?)da + (2*C2y? — 2P 2%y + ryu)de,
where (z%2%y + 2y?)dx € C2, so we have a new class D1 given as follows,
D1: (2?®xy? — 2922y + xyu)dz.

(One may check that this exact differential is holomorphic, using Lemma 2.3.) In a
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similar way we construct the following classes,

2

u® 20 dx = (2P0 zy? — 220y3 4 30y — 2290920 + 2920 — yu?)dz

2y — g0y + 230y — 229092y + 29020 — yu?)dz

= 230D1 — 2?9 C3 — 2?1 3C7T — D2 + 2 D3,

= (2P0 gy? — g0y

where

D2: (z%0y2u + yu?)dz,

D3: (22 322y + 29 32y%0 + 2u?)dz.

One may check using Table 1 that each of D2 and D3 is exact. In fact, D3, shows up
in the calculation of the kernel of the Cartier operator in the case s = 1 (see Section 6
below). This is what suggested the decomposition —D2 + 29%°D3, and that we should
seek similar decompositions as follows.

3 w0 204y = (x5q0+3y2u + 250 g2y — g3 0% 4 2105200 — 54902

+ 303y ? 4 PO pyuy — 2?02y u? — P20y up + 20133

+ 2 zu?v — udz?y — yu?v)dz
= 30 T3P — ;20 C8 — 2210 73C12 4 29033 A1 + 23 D4 — D5 + 2 D8,

where

D4: (22® 320 — p9033y? — 292%yv + ryuv)de,

D5: (22022922 + 2290y %uv + ud2?y + yu?v)de,

D6: (2P xyuv + 2207 322yv? + 20222 uv + 290 3zy?0? + zuv)dr.
Similarly by expanding 3%u v?%dz, we have

(25003520202 _ 5003y 200 500202 pAaok6,3 a0y 3 4 3004832,
— 2303y 2y + 230 pyun? — 220303 1y? + 220222020 — 2?20y2u0? + 20 3u3 e
— 290393y 4 g0 zu0? — p3udzyu 4+ wPriyv — yuo?)da

= 30 3D5 — 220013 — 1 0F63A1 — 2103 A1 — 29033 B1 — 22u3D1 + 23°D7 4+ D8 + 29°D9,

where

D7: (2290F320 + 2203y%0? + 2032020 — s0 22002 + 23yue + ryuv?)de,
D8: (22 x2y%u2y — 220y%un? — 2033220 + udryv — yuv?)de,

D9: (2203yy2y — 220 zyun? + s92%y%uv — 29y2uv? + 23udv + zue?)d.

We can try to construct more exact holomorphic differentials using the classes Ci’s,
e.g. u®C6, y?ulC6 and ydu®C6 etc., but they only give us the same classes as
discussed above, so we can ignore them. It can be observed that in each class, containing
differentials of the form f3gdz, the pole order of g allows multiplication by f3 = 13
and 4%, but considering such possibilities never gives us any new classes, e.g.

y°D2 = 23u3D1 — D8, (22)

Given these thwarted attempts to construct more, we begin to suspect that the whole
space of exact holomorphic differentials on the curve X is spanned by those in the
classes Ai, Bi, Ci and Di.
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The elements we have produced are all of the form f3g dx, where gdx can be any of the
42 forms given by the Ai’s, Bi’s, Ci’s and Di’s. Next we introduce certain restrictions
on the monomial f = %40, to make f3gdx holomorphic, then we count the number
of such elements in each of the 42 classes. We state these restrictions, for each class, in
the following table. (It is taken as read that « >0 and 0 <~v,0 <% —1.)

Classes Restrictions on «, v and 4.
Al A2 A3, A4 a+y+20<qgo—1
A5, B1, B2, B3 a+v+25<qyo—2
B4, B5, B6, C1 a+v+25<qgy—3
B7, B8, B9, C4 Either o+ + 2§ < 20 — 2
ora+y+20=2L —1withy+J< %1
B10, C2 a+y+20< 2 2
B11, C6 Either o+ +25 < 22 — 3
0ra+’y+26:2%—2with”y+5§%0—1
B12 Either o + v + 26 < 2 — 3
0ra+'y+25:2%—2with'y—l—5§%°—2
B13, C7, C11 at+y+20< 23
B14, C10 Either o+~ +26 < 20 —4
0ra+7+25:2%—3with7+5§%0—2
C3, C5, D3 a+y+20< L —1
Cs8, C9, D1, D2, D4, D6 a+y+26 <D -2
C12 a+y+20<30 4
C13, C14, D5, D7, D8, D9 a+y+25 <D -3

Table 2: Restrictions on f.

The following table summarises the results of counting the number of elements in each
class.
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Classes Number of differentials
A1, A2, A3, A4 %(qa +3)
A5, B1, B2, B3 %(qo +1)
B4, B5, B6, C1 %(qo -1
B7, B8, B9, C4 813 (14¢3 + 210 + 27)
B10, C2 213 (14¢3 — 15q0 + 27)
B11, C6 23 (14q2 + 150 + 27) + 525 (qo + 3)*
B12 -2 (14q2 + 51qo + 27)
B13, C7, C11 -2 (1442 + 15q9 + 27)
B14, C10 B3 (14¢3 — 3o — 27)
C3, C5, D3 242 (23 + 21qo + 27)
C8, C9, D1, D2, D4, D6 8- (2q0 +9)
C12 8-3(14¢3 — 39go — 27)
C13, C14, D5, D7, D8, D9 8- (2g0 — 9)

Table 3: Number of differentials in each class.

Lemma 4.1. Let w1 = figidx and we = fygodx be two holomorphic differentials,
(where f; = x®uYiv®; ~;, §; < %O — 1) such that orde(w1) = orde(w2). Then

—[ordso(g1) — ordeo(g2)] = 3kq + 9lgp + 3m, (23)

where k, 1, m € Z, with |m| < L and |I] < 2% —1.

Proof. Let wy and we be as above.

ordeo(wy) = ordec(w2)

& —ordss(g1) — (—ordeo(g2)) = —ordes (f3) — (—ordeo(f})). (24)
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Since f; = z®uYiv%,

_Ordoo(fi?))
= —ordeo(f3) — (—orduo (f}))

[(Oéi + v+ 2(5i)q + 3(%‘ + (50(]0 + 51']
[(c2 + 2 + 202)q + 3(v2 + 2)qo + 2]
— 3[(a1 + 71 4 201)q + 3(y1 + 01)q0 + 1]
= 3[kq + 3lgo + m], such that k, [ and m € Z,

=3
=3

with [ and m satisfying the conditions stated above. O

Proof. of Theorem 1.2.

Each of the classes Ai, Bi, Ci and Di consists of exact holomorphic differentials w =
f3gdx, for certain monomials f in x,u and v. With the help of Lemma 4.1, it can
be verified that no two such differentials have the same orders at P, e.g. from Bl
and B2 we have g1 = x?u + v, with —ords(g1) = 3¢ + 3qo, and go = zyu + yv,
with —orde(g2) = 4¢ + 4gp. Then —ords(g1) — (—ordeo(g2)) = —q — qo, which is
not of the form 3kq + 9lgo + 3m with |m| < €, and |I] < 2% — 1. We can show the
same for each other pair of classes. Consequently all these differentials are linearly
independent. To count them we add up all the numbers of elements in the 42 classes,
as listed individually in the table, giving us a lower bound for the dimension of the

space of exact holomorphic differentials. It is precisely

2qo 2 1 2
— (14 9 11 9
5 (14¢5 + )+12( a +9),
so we have proved Theorem 1.2. ]

Conjecture 1.1 is that this lower bound is the exact dimension.

Remark 2: The above sum must obviously be an integer, but we can also see this

directly from the formula. Of course 2?%(14% +9) is an integer since the numerator
is divisible by 3% (as 3|go). But also 3;(11¢2 +9) € Z, since 112 +9=11x1+9 =

0 (mod 4), and 11¢3 + 9 is obviously divisible by 3.

Remark 3: For any large s, comparing the (conjectured) dimension d of the space
of exact holomorphic differentials to the genus g = %qo(q — 1) shows that it is approxi-
d _ 56

mately a quarter of g. To be precise, lim ¢ = =.
s—o00 Y

§5 A group action on HY(X, Q%)

Let ¢ € F; be a primitive (¢ — 1)st root of unity. Define an F,-linear automorphism 6
of the function field F,(X) by 0(z) =  z, 0(y) = ¢! y. (This preserves the equation
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y?—y = 2% (2?7 —x).) This 0 then also acts naturally as an automorphism of the curve
X/F,, and as an F-linear transformation of H%(X, ).

( x—=(x

0: u s B0ty (25)
v (303 y
dr — (dx.

For each i(mod(q — 1)), let A; be the subspace of H%(X,Q!) on which 6 acts as multi-
plication by ¢’. Note that this is independent of the choice of ¢, in fact it is an isotypic
component for the action on H°(X, Q') of the cyclic group G ~ F7 generated by 0.
Since the order of G is coprime to the characteristic, we have

H(Xx,0)Y= P A (26)
i(mod(q—1))
The following lemma (suggested by the referee) is immediate.

Lemma 5.1.

2P ucvlde € Ay <= a+blgo+1)+¢(3q0+1)+d(3g+3)+1=4 (modq—1).
Lemma 5.2. €(A3;) C A;

Proof. Let ws; € Asg;. It follows from the definition in Proposition 3.1 that C commutes
with automorphisms of the curve. Hence

9@:(&)31') = @(9&)31)
= €(¢Pws;)
= ("€¢(ws;).

From the above it is clear that €(ws;) € A;, hence €(As;) C A;. O

Remark 4: Since 3%*! = ¢ = 1 (mod(q — 1)), € therefore permutes the A; in cycles
of length dividing 2s + 1.

Equation (26) and Lemma 5.2 easily imply the following.

Proposition 5.3.
ker(@)= P  ker(€|4,)

i(mod(q—1))

We are indebted to the referee for showing us what to use for the proof of the following.
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Proposition 5.4.
30+ if i is odd,
dim(A4;) =

30=1 p.
=—if i is even.

Proof. Consider the projection m : X — Y, where Y is the quotient of X by the
group G of automorphisms generated by 6. Recall that G is cyclic of order ¢ — 1,
so m is a morphism of degree ¢ — 1. Recall also that y? — y = z% (2 — z), that
0(x) (i.e. the pullback 6*(z)) is ¢z and O(y) = (*Fly. If P = (o, ) € X(F,) with
o # 0, then 0¥(P) = (¢Fa, @0+ B) so the stabiliser of P under the action of G is
trivial, and P is not a ramification point for 7. At the other extreme, Py := (0,0)
and P, are fixed points for the action of G, with ramification index (¢ — 1). There
remain (¢ — 1) points Ps := (0, 3) for 8 € F, — {0}. We have 0(FPg) = Pjcqo+1. Since
g—1=1(q0+1)(3go—3)+2, so that g.c.d.(go+1,q—1) = 2, it follows that these points
form two orbits of size (¢ — 1)/2 for the action of G, and all have ramification index 2.
There are four branch points for 7, with inverse images of sizes 1,1, (¢—1)/2,(¢—1)/2.

Now we are ready to find the genus g(Y') of Y, using Hurwitz’s formula 2¢(X) — 2 =
deg(m)(29(Y)—2) +ZP€X(E)(ep —1), for the tamely ramified cover 7 : X — Y, where

the ep are the ramification indices. Since g(X) = 3qo(q — 1), we get
3q0(g =1 =2=(¢-1)29(Y) =2) +2(¢ =2) + (¢ = 1) = (¢ = )(29(Y) + 1) = 2.

Hence g(Y) = 3‘1027_1. Since Ay = 7*HY(Y,Q'), this proves the case i = 0 of the
proposition.

To prove the other cases, we turn to Lemma 4.3 of Bouw [B], who credits it to Kani
[K]. Let Q1 = m(Px), Q2 = 7(P), Q3 and Q4 be the branch points of m. The sizes of
the inverse images are n; = ng = ¢ — 1 and n3 = ng = (¢ — 1)/2. In Bouw’s notation,
¢ = ¢ —1 and we have numbers b; and a; for 1 < j < 4. Since ordp,_(z) = ¢, = is
a uniformiser at each of the ¢ points P3 for 8 € F,. At Py, zu/v is a uniformiser,
by Proposition 2.1. Since 0*(x) = (x while 0*(zu/v) = (~tou/v (using (25)), we find
that by = —1 while by = b3 = by = 1. Now a; is defined to be the multiple of n; such
that 0 < a; < £ and a;b;/n; = 1 (mod ¢/n;). It follows that a; = ¢ — 2,a2 = 1 and
az = a4 = (q— 1)/2.

If we define L;, for 0 < i < ¢ — 1, to be the subspace of H*(X,Ox) on which # acts as
multiplication by ¢, then according to Lemma 4.3 of [B] in our case,
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3q0 — 1 —1—1 7 . 3q0 — 1 .
_2M— 2 44 qz +2(i/2)

2(1/2) =
2 q—1 +q—1+ (i/2)
:{3‘1021 i even;

3qo+1 .
== 1 odd.

By Serre duality, dim.A; = dimL,_1_;, and since ¢ — 1 is even, the proposition follows.
O

Remark 5: One may check, using Proposition 2.4 and Lemma 5.1, that the following
3q°72+1 differentials belong to our basis for H%(X,Q!) and to Aj;, so must form a basis
for Aj:

de, 220y, ztuv®2de, ..., 2P 3yu®2ude, 2 Tyu®de,

q0—1 go—1 g0+l gp—3 _ _
yu T vz dx, 2Pyu 2 v 2 d, ..., 290 g,

§6 Proof of Theorem 1.3

s=1

The A; are of size 5 for i odd, 4 for i even. The following shows, for a few of the A;’s,
a basis (arranged in a lexicographical order).

A1 = (dz, yuvdz, 2*v?dzx, 2*yulde, 2 uvdz),

Ay = (zdz, zyuwvdz, 23v*dz, 23yuds),

Az = (yvidx, y*u’de, r2de, r’yuvde, :z:4yu2dx>,

Ay = (zyv’de, zy*u’de, 23dz, 3yuvdr),

As = (ydz, yiuvdz, z?yv’dz, 2*y*u?de, zidc),

Ag = (zydz, zy*uvde, 2%y*u’de, 25dz).

These may be confirmed using Proposition 2.4 and Lemma 5.1, but the following in-
dicates how these bases were generated in practice. We start with the basis for A;
given by Remark 5. In getting from A4; to Ay we have more-or-less multiplied by z,
but we dropped z’uvdz as it is not holomorphic. To get from A to As, again it is
mostly a case of multiplying by z. We have discarded the non-holomorphic z*v2dzx, but
have gained two by replacing 2# (i.e. 29%%1) with 3 in both that and the holomorphic

zryu? de.
As mentioned earlier, € maps each A; to A; 3, and permutes the A; in cycles of length

dividing 2s 4+ 1. For s = 1, one easily checks that it produces 8 length 3 cycles and 2
length 1 cycles (the latter for i = 0 and i = (¢ — 1)/2). For example

AL S A S A S AL
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Here we show calculations for a part of this cycle, Ag LN As, where
Ag = (wvdz, yidx, 2*u*vdzr, zlydx, z8dr)
If w € Ag then we can express w as
w = M (uv?dx) + \3(y2dx) + N(x*uPvdx) + N (2tydx) + N (28dx), with \; € F,.
If w € ker(€)| 4, then €(w) = 0 shows

C(w) = EN (uvdda) + N3 (y2dx) + A3 (z*uvdx) + N3 (xtydx) + A3 (2¥dx)) = 0
= MC(uv?dr) + € (yidr) + A€ (z?uvdr) + MC(xtydr) + \s€(28dx) = 0
= MC(uv?dr) + \a€(yidr) + M€ (x*uvdr) + \x€(zydr) + \sx*€(xdz) = 0.
(27)
We use Table 1 to substitute into (27). This gives

M (ztyu® — 22yuv + yo?)de + Ao (w*uPvdr) + A3 (2tyu? — 2?yuv + yo?)de + \y(2?dx)
+ )\5(d5€) =0.

Since €(w) € Ajg, it can be expressed in terms of the generators of Az. The above
equation becomes

(A1 4 A3)vPydx + (0)y2uldz + (Mo + Mg + Xs)2de + (= — A3)z yuvdz
+ (A1 + \3)ztyu?dr = 0 (28)

To find ker(€|4,), we have to find the null space of the associated matrix Mg 3. We
solve the following:

101 00 A1 0
0 00 0O Ao 0
01 0 11 M| =10
20 2 00 Vi 0
101 00 A5 0
This gives
Al =—A3
/\5 = —()\2 =+ )\4).

From the above we have the following three linearly independent exact holomorphic
differentials:

(z%u?v — w?)dx ; (29)
(zty — y?)da; (30)
(2® — 2ty)dz = 23 (232% — zy)da . (31)

These basis elements actually belong to our earlier lists, specifically C1, B8 and B7
respectively.
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For the length-1 cycles, we find that ker(€|4,,) is spanned by (z?u + v)dx € B1, while
ker(€| 4,) is spanned by z3(z%u? + uv)dr € B3 and (z3uv + zv?)dr € B4. From these
and similar calculations, we find that the dimension of the space of exact holomorphic
differentials HO(X,Q")¢=0, for s = 1, is 39 (compared with g = 117), and the basis
elements we find all lie on the lists Ai, Bi, Ci, Di.

s =2

For s = 2 we can proceed in a similar manner to that described for s = 1, to find,
inside each A;, a subset of our basis for H%(X, Q'), of size % if 7 is odd, 3‘102_1 if i is
even. For example, the following shows our basis (arranged in a lexicographical order)
for a few of the A;’s.

A =(dx, yu4v4daj, 2?08dzx, 2 yudvide, zhun’de, x4yu6v2d:c, 2%u?08dz, :cﬁyu7vda:,
Budvde, :I:SyUSda:, Outvtde, 22uPvide, 2 4 ubv?de, x16u7vdx)
7

Ay =(zdz, zyutvide, 30v8de, Byudvdde, duw’de, dyuto®de, 2 vz, 2 yu vde,

23 de, POyulde, M tutvide, 2BuPvdde, $15u6v2dx>

As :<yu3v5d:z, vulde, 22de, :c2yu4v4d$, z48da, zhtyu®vdde, 2Suwde, 2OSyubo?de,
22u?vdz, msyu7vdx, 203 0dde, xloyu8dm, e 2utvtde, x14u5v3dx)

Ay :<:Uyu3v5d3:, zy?ulde, 23dx, 2Pyutotde, 2Pvde, Pdyudvdde, 2w de, 2 yubo?de,
22u?08de, 2Oyuvde, 2 uddde, 2 yudde, x13u4v4daz>

As :<yu206dx, y2u7vdw, 22yudv’de, 22y*ulde, zd, x4yu4v4daf, 2008dz, 2Syudvide,

Suv’de, xsquUde, xloyzvﬁdx, xloyu7vdx, z2u3vdde, xmyusdw).

We have altogether 242 A;’s, which give rise to 48 cycles of length 5 and 2 cycles of
length 1. We deal with these cycles one by one, just like in the case s = 1, finding each
ker(€| 4,) by solving a set of linear equations. However, the corresponding matrices will
now be either 14 x 14 or 13 x 13. We therefore found their null spaces with the help of
the computer package Maple. (For the details of these calculations see [F].)

In the case s = 1, we observed that for each cycle of length 3, containing A4;’s all
of dimension either 4 or 5, the total contribution of the cycle to dim H°(X, Q)%= is
precisely dim(.A;). However, in the case s = 2 we found that, for the cycles of length
5, dim(A;) is only a lower bound for the contribution to dim H°(X, Q!)%=° of the cycle
containing A;. The length-5 cycles making the smallest contribution (i.e. 13) to the
dimension are ./440 E) ./494 E) A112 E) A118 E) .A120 £> ./440 and ./4122 £> A202 E)
A4 LN Aiso LN Aio4 LN A122. Looking at the latter in more detail, the contributions
are as follows:

ker (€] 4,,,) is spanned by x3v3udr € A4, 2°ududr € A4, v3zvdr € A5 and 28udrvdr €
A5.

ker (€] 4,,,) is spanned by z3ub(22u + v)dr € B1, v5(z®22y + 29?)dr € C2,
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ker(€|4,,,) is spanned by z3u3(z3zu? — 2%uv + v?)dz € B5 and v3(z20 32%yv +
9 3zy%0 + xu?)dr € D3.

ker (€| 4,4,) is spanned by z%03(z%u + v)dz € B1 and u!'®u3(2%u + v)dr € B1.

ker(€| 4,,, ) is spanned by z3v3(z%u+v)dz € B1, 23 (z?u+v)dz € B1, and u3 (220 zy%—
rP2%u + ryu)dr € D1.

The length-5 cycles making the largest contribution (i.e. 26) to the dimension are
C C C C C C C C C
A1 = Ag1 = Aoy = A9 = A3 = Ap and A1 — Aoz — Aozz — Az —
C
Aoar — Aier.

The cycles of length 1 (containing 4121 and Asg42) make smaller contributions:

ker(€| 4,,,) is spanned by v?(z?yu + yv)dz € B2 and z%u3(z?yu + yv)dr € B2, while
ker(€| 4,,,) is spanned by x3v0(z?u? + wv)dr € B3, 2%udv3(2?u? + wv)dr € B3,
2Pub(22u? + wv)dz € B3, v5(z3uv + zv?)dr € B4, 250303 (23uv + x0?)dr € B4,
21208 (23uv + 20?)dx € B4, and 23ub(x32yu® — 22yuv + yv?)dx € B6.

All in all, we find that the dimension of the space of exact holomorphic differentials
for X, when s = 2, is 837 (compared with g = 3267), which exactly matches with

%(14(}8 +9)+ 1—12(11q(2) +9), (by putting go = 9 and ¢ = 243).

All the exact holomorphic differentials found by our calculations for s = 1 and s = 2 are
accounted for by the classes Ai, Bi, Ci and Di. We checked directly that the numbers
found in each class match those given by Table 3. Many of these turn out to be 0 in
the case s = 1, and generally speaking, there are many more differentials in the earlier
classes than in the later classes.

Now that we have proved Theorems 1.2 and 1.3, we address the question of why we
might believe Conjecture 1.1. Originally, we only found the classes Ai, Bi and Ci, and
thought that might be all, so why should we now believe that for every s > 1 the space
of exact holomorphic differentials is spanned by those in these classes and the Di, aside
from the fact that we can’t find anything else? After finding the classes Ai, Bi and Ci,
we then calculated the kernel of € in the case s = 1 and found that, although almost
everything we found was in one of these classes, the differential (z3z2yv+2y?v+ru?)dz,

(obtained from Ajy E) Aig) does not belong to any of them. This is what made us
look for more, and discover the classes Di. The above differential belongs to D3.
Our calculations for s = 1, the very first case we looked at, revealed what we had
missed. Were we still missing anything after discovering the Di, it seems likely that
our subsequent calculations for s = 2 would likewise have revealed it.
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