CRITICAL VALUES, CONGRUENCES AND MOVING BETWEEN
SELMER GROUPS

NEIL DUMMIGAN

ABSTRACT. We look at various related constructions of elements in Selmer
groups, which confirm predictions of the Bloch-Kato conjecture, or which,
in conjunction with the Bloch-Kato conjecture, yield predictions that can be
verified. We begin with a particular critical value for the tensor product L-
function associated to a pair of cusp forms of different weights.

1. A CRITICAL VALUE OF THE TENSOR PRODUCT L-FUNCTION

In this section we review parts of [Dul], in particular Theorem 14.2. Let
f € Sk = Sx/(SL2(Z)),g € Sk, with k/ > k, be normalised eigenforms. If
f=3 1 ,anq™ then

Lf(s) = Z annis = H Lf,p(s)y
n=1

P prime
where L ,(s) = (1—app™* +pk/_1_25)_1 . The series converges for Rs sufficiently
large, but there is an analytic continuation to the whole of C.

Let K be any number field containing Q({a,}), and A any prime of Oy, say A | £.
By a theorem of Deligne, there exists a continuous linear representation

pr: Gal(Q/Q) — Aut(Vy)

(where Vj is a 2-dimensional K}-vector space) such that, for any prime p, and any
A such that £ # p,

(1) Ltp(s) = det(I— p¢(Frob, M )p =)~ ".

Here Frob, is an element of Gal(@p /Qp) C Gal(Q/Q) lifting the automorphism
x — xP of Gal(F/F,).

Let K = Q({an,bn}), where g = Y °_; brq™. We also have pq : Gal(Q/Q) —
Aut(Vy), and define in the natural way pigq : Gal(Q/Q) — Aut(V{ ® Vi). Substi-
tuting preg for p in (1), we obtain

L(s) = Lf®g(5) = H Lf®g,p(5)~
P

This, like L¢(s), is an example of a motivic L-function, and its critical values are
L(t) for k <t <k/—1. It is easy to show that

(2) Ligg(s) = C(2s+2—k—Xk')D(s, f,g),
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with D(s,f,g) := } o_; anbpn 5. Shimura [Sh] proved the following formula for
the critical values:

(3) D(k'—1—rf,9) = T(f,06) . Eww 2v)

(Petersson inner product), where ¢ = (k,f(zli;)]f&z,iil)iq 7T (—=1)r4k’=1,

1 K 0
Sk=x—(5—+=], 80 =6ciar2...8c:20,
<~ om (2@ * az> » O = Oet2r2. Ot 20k
and B, = 1 — é—'( °n°:1 ox_1(n)g™. Note that gég,)fkferk/,k,zr satisfies the
same transformation properties as a modular form of weight k’, but in general is

not holomorphic.
If ord¢(Bx/2k) > 0 then there should exist A | £ such that

(4) bn=o0x_1(n) (mod A\) Vn > 1.

The case k = 12,{ = 691 is Ramanujan’s famous congruence. We shall assume
that such a congruence holds. It is certainly true whenever, as expected, g and its
Galois conjugates span Sy.

Theorem 1.1. Suppose that ¢ >k’ —2, (/) holds and that A is not a congruence
prime for f in Sx.. Suppose also that k' > 2k and that kX'/2 is odd. Then

L((k'/2) +k—1)
ordy ( o (f,f) ) > 0.

The condition k/ > 2k guarantees that (k’/2) + k — 1 lies in the critical range.

Proof. Note that r = (k//2) —kisodd, k' —k—2r =k and 2s +2—k—k’ = k. By
(2) and (3),

L((k'/2) +k—1) = ¢(k)et ' (f, gd\ Ep).
Hence it suffices to show that ord, (_zlik (f, gég)Ek)/(f, f)) > 0. Note that (f, gél(cﬂEk) =

(f, Hol(gél(:]Ek)), where the holomorphic projection operator is such that, term-by-
term, the constant term disappears, and for m > 0,

(k' —2—j)!
(k' —=2)!
(See [St] or pp. 288-290 of [GZ].) A lemma of Hida (Lemma 5.3 of [Hi]) says that
Hol(gé(Kr]g’) = (—1)rH01(g’6LT)g), for any g’ € M. Letting ¢’ = ¢, and recalling
that r is odd, we find that Hol(gég)g) =0. Letting h = g—l—%Ek, it then suffices to
show that ordj %
Fourier coefficients of h. Then the fact that £ is too large to divide the denominator
in (5) implies that A also divides all the Fourier coefficients of h/ := Hol(gél(:)h).
Let {f1,...,fa} be a basis of eigenforms for Sy, with f; =f. If h/ = > «;fj, then
we need A | o;. But this follows easily from A | h/ and the fact that A is not a
congruence prime for f. O

(5) Hol:y ' q™ — (4rm) q™.

> 0. The congruence (4) implies that A divides all the

There is a “natural” way to choose Gal(Q/Q)-invariant Ox-lattices T{ in V{
and Ty in Vi, as in 1.6 of [DFG]. Let W} := V{/T{, W'[A] = W;I[Al, etc. Let
Vy" == V{ ® Vi. Note that T} (k’/2) is analogous to the {-adic Tate module of an
elliptic curve.
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One can show that, given Theorem 1.1, a special case of the general Bloch-
Kato conjecture on special values of L-functions [BK, Fo] demands the existence
of a non-zero element of the Selmer group H} (Q, Wy/((k’/2) + k —1)). This is a
subgroup of H'! defined by conditions on the local restrictions. (A Tate twist has
been applied to the coefficient module, corresponding the the point at which the
L-function is evaluated.) It is analogous to the Shafarevich-Tate group appearing in
the rank-zero case of the Birch and Swinnerton-Dyer leading-term conjecture. We
can support the Bloch-Kato conjecture by constructing such an element as follows.

Since k’/2 is odd and the sign in the functional equation of L¢(s) is (—=1)%"/2,
L¢(k’/2) = 0. (Note that s = k’/2 is the centre of symmetry of the functional
equation.) An analogue of the Birch and Swinnerton-Dyer conjecture predicts that
the dimension of H}(Q, V{ (k’/2)) equals the order of vanishing of L¢(s) at s = k’/2.
If we assume that A { a; (i.e. that f is “ordinary” at A), then, given the oddness of
the order of vanishing, theorems of Skinner-Urban[SU] or Nekovaf[N] (either will
do) give us that H}(Q, V{(k//2)) # 0. Scaling to land in H}(Q, Ty (k’/2)), then
reducing (mod A), yields a non-zero element of H' (Q, W/[Al(k’/2)).

By (4) we have, for all primes p, b, = 14 p*~" (mod A). Using the fact that
by, = Tr(pg (Frob;1 )), this implies that the composition factors of WIA] (i.e. of D)
are F) and F) (1 — k). With our natural choices of lattices, it is possible to show
that Fx(1 — k) is a submodule (Theorem 7.3 of [Du3]). Hence W[A](k — 1) has a
trivial submodule Fy, so W/[A] @ W[A](k— 1+ (k’/2)) has a submodule isomorphic
to W/IAI(k'/2).

Hence our non-zero element of H' (Q, W/[A](k’/2)) produces elements of
H'(Q,W"AI((k'/2)+k—1), then of H'(Q, Wy/((k’/2)+k—1). Tt is possible to show
that this latter element is non-zero, and satisfies the Bloch-Kato local conditions.

2. APPLICATIONS OF RELATED CONSTRUCTIONS

(1) Essentially the same construction produces a non-zero element of A-torsion
in a Selmer group attached to L(Sym?g, (k/2) +k— 1), when (k/2) is odd,
where A is the modulus of (4). Then, working backwards, the Bloch-Kato
conjecture predicts (in the case that A is not a congruence prime for g in
Sx) that A divides L(Sy“;jf‘,(f (/gzy)gtk_”. This divisibility may be observed
experimentally [Dul], but it appears to be an open problem to prove it
in general, in contrast to the tensor-product case. For some experimental
evidence in the Hilbert modular case, see also [Du2].

(2) The best understood critical value of L(Sym2 g,s) is at s = k, where one
gets a simple multiple of (g,g) ([P], see also (2.5) of [Sh]). Only in the
case k =21is (k/2) + k—1 = k. The above construction may be applied in
the case of g € S2(Ih(N)) attached to an elliptic curve E/Q. We must have
E(Q) of positive rank (to get the analogue of H} (Q, V{ (k’/2)) # 0), and also
a rational point of order £ (to get factors Fy and Fy(—1) for Py = E[I(—1 ).
The ratio of (g, g) to the canonical Deligne period is essentially the degree
of the modular parametrisation ¢ : Xo(N) — E. (Let’s suppose that E
is chosen to be optimal in its isogeny class, i.e. ¢ has minimal degree.)
This leads to predictions about the modular degree, which can be proved.
Specifically, the following is Theorem 1.3 of [Du3].
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Theorem 2.1. Let E/Q be an optimal elliptic curve of conductor N. Sup-
pose that B has a rational point of prime order £ =5 or 7. Suppose also that
E has a prime p of split multiplicative reduction such that p Z 1 (mod {).
IfL(E, 1) =0 then €| deg(d).

This work has been refined and generalised to modular abelian varieties
of higher dimension, by my student Ian Young.

(3) The construction used above depends on having a map from one Galois
module to another, which can be used to carry an element from the coho-
mology of one to the cohomology of the other, providing a candidate for an
element of a Selmer group. For example, in the above case, multiplication
by the rational point of order £ gives a map from E[] to Sym?E[(]. 7.1(4)
of [DW] is a numerical example in which multiplication by a rational point
of order 7 is likewise used to get from SymSE[7] to SymGE[7].

In [Dud] a different map is used, namely the squaring map from E[2] to
Sym?E[2], to try to explain Watkins’ conjecture that 2R divides deg(d),
where R is the rank of E(Q). 7.2(2) of [DW] is a numerical example in
which the cubing map is used to get from S‘ysz[?)] to SyméEB].

(4) In [CM], the two Galois modules are isomorphic: E[f] ~ E’[{], and the
cohomology class coming from a rational point of infinite order on E is
used to produce an element of order £ in the Shafarevich-Tate group of
E’, in examples where the Birch and Swinnerton-Dyer conjecture predicts
the latter. In fact, the same congruence of modular forms resulting from
E[{] ~ E’[{] also shows how vanishing of L(E, 1) leads to divisibility by £ of
Lais(E’, 1), as explained in [DSW], which contains a generalisation to higher
weight cusp forms.

(5) In [DIK], we have a cuspidal Hecke eigenform f of weight j+2k—2, a cuspidal
Hecke eigenform F of genus 2 and type Sym’ ® det® (vector valued when
j > 0), and a congruence of Hecke eigenvalues (for all p) ur(p) = ap(f) +
P2 + pI*k=1 (mod A), where A is a large prime divisor of Lag(f,j + k)
and pug(p) is the eigenvalue of a genus-2 Hecke operator T(p) acting on F.
In the case j = 0, F is a non-lift congruent to the Saito-Kurokawa lift of f,
while in the case j > 0 the congruence is predicted by Harder’s conjecture
[Ha, vdG]. If pf is a A-adic representation of Gal(Q/Q) attached to F, then
the congruence implies that the composition factors of py are pg, F(2 —k)
and Fx(1 —j — k). We may arrange for F»(2 — k) to be a submodule,
Fa(1 —j — k) to be a quotient, with p; in the middle. Then p;(2 — k) is
a submodule of A?pp. This can be used to move an element of order A
in a Selmer group associated to A | Laig(f,j + k) [Br], to one in a Selmer
group associated to a certain critical value of the standard L-function of F.
Bloch-Kato then predicts the divisibility by A of a certain ratio of standard
L-values for F. This divisibility may be proved in the case j = 0, and
confirmed by computation in examples for which j > 0.
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