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Abstract. We look at various related constructions of elements in Selmer
groups, which confirm predictions of the Bloch-Kato conjecture, or which,
in conjunction with the Bloch-Kato conjecture, yield predictions that can be
verified. We begin with a particular critical value for the tensor product L-
function associated to a pair of cusp forms of different weights.

1. A critical value of the tensor product L-function

In this section we review parts of [Du1], in particular Theorem 14.2. Let
f ∈ Sk ′ := Sk ′(SL2(Z)), g ∈ Sk, with k ′ > k, be normalised eigenforms. If
f =

∑∞
n=1 anqn then

Lf(s) =

∞∑

n=1

ann−s =
∏

p prime

Lf,p(s),

where Lf,p(s) = (1−app−s +pk ′−1−2s)−1. The series converges for <s sufficiently
large, but there is an analytic continuation to the whole of C.

Let K be any number field containing Q({an}), and λ any prime of OK, say λ | `.
By a theorem of Deligne, there exists a continuous linear representation

ρf : Gal(Q/Q) → Aut(V ′
λ)

(where V ′
λ is a 2-dimensional K ′λ-vector space) such that, for any prime p, and any

λ such that ` 6= p,

(1) Lf,p(s) = det(I − ρf(Frob−1
p )p−s)−1.

Here Frobp is an element of Gal(Qp/Qp) ⊂ Gal(Q/Q) lifting the automorphism
x 7→ xp of Gal(F/Fp).

Let K = Q({an, bn}), where g =
∑∞

n=1 bnqn. We also have ρg : Gal(Q/Q) →
Aut(Vλ), and define in the natural way ρf⊗g : Gal(Q/Q) → Aut(V ′

λ ⊗ Vλ). Substi-
tuting ρf⊗g for ρf in (1), we obtain

L(s) := Lf⊗g(s) :=
∏
p

Lf⊗g,p(s).

This, like Lf(s), is an example of a motivic L-function, and its critical values are
L(t) for k ≤ t ≤ k ′ − 1. It is easy to show that

(2) Lf⊗g(s) = ζ(2s + 2 − k − k ′)D(s, f, g),
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with D(s, f, g) :=
∑∞

n=1 anbnn−s. Shimura [Sh] proved the following formula for
the critical values:

(3) D(k ′ − 1 − r, f, g) = cπk ′−1(f, gδ
(r)
k ′−k−2rEk ′−k−2r)

(Petersson inner product), where c =
(k ′−k−2r−1)!

(k ′−2−r)!(k ′−k−r−1)! (−1)r4k ′−1,

δκ =
1

2πi

(
κ

2iy
+

∂

∂z

)
, δ(r)

κ = δκ+2r−2 . . . δκ+2δκ,

and Eκ = 1 − 2κ
Bκ

∑∞
n=1 σk−1(n)qn. Note that gδ

(r)
k ′−k−2rEk ′−k−2r satisfies the

same transformation properties as a modular form of weight k ′, but in general is
not holomorphic.

If ord`(Bk/2k) > 0 then there should exist λ | ` such that

(4) bn ≡ σk−1(n) (mod λ) ∀n ≥ 1.

The case k = 12, ` = 691 is Ramanujan’s famous congruence. We shall assume
that such a congruence holds. It is certainly true whenever, as expected, g and its
Galois conjugates span Sk.

Theorem 1.1. Suppose that ` > k ′ − 2, (4) holds and that λ is not a congruence
prime for f in Sk ′ . Suppose also that k ′ > 2k and that k ′/2 is odd. Then

ordλ

(
L((k ′/2) + k − 1)

πk ′+k−1(f, f)

)
> 0.

The condition k ′ > 2k guarantees that (k ′/2) + k − 1 lies in the critical range.

Proof. Note that r = (k ′/2) − k is odd, k ′− k − 2r = k and 2s + 2 − k − k ′ = k. By
(2) and (3),

L((k ′/2) + k − 1) = ζ(k)c.πk ′−1(f, gδ
(r)
k Ek).

Hence it suffices to show that ordλ

(
−Bk

2k (f, gδ
(r)
k Ek)/(f, f)

)
> 0. Note that (f, gδ

(r)
k Ek) =

(f, Hol(gδ
(r)
k Ek)), where the holomorphic projection operator is such that, term-by-

term, the constant term disappears, and for m > 0,

(5) Hol : y−jqm 7→ (k ′ − 2 − j)!

(k ′ − 2)!
(4πm)jqm.

(See [St] or pp. 288–290 of [GZ].) A lemma of Hida (Lemma 5.3 of [Hi]) says that
Hol(gδ

(r)
κ g ′) = (−1)rHol(g ′δ(r)

κ g), for any g ′ ∈ Mκ. Letting g ′ = g, and recalling
that r is odd, we find that Hol(gδ

(r)
k g) = 0. Letting h = g+ Bk

2k Ek, it then suffices to

show that ordλ

(
(f,gδ

(r)
k h)

(f,f)

)
> 0. The congruence (4) implies that λ divides all the

Fourier coefficients of h. Then the fact that ` is too large to divide the denominator
in (5) implies that λ also divides all the Fourier coefficients of h ′ := Hol(gδ

(r)
k h).

Let {f1, . . . , fd} be a basis of eigenforms for Sk ′ , with f1 = f. If h ′ =
∑

αifi, then
we need λ | α1. But this follows easily from λ | h ′ and the fact that λ is not a
congruence prime for f. ¤

There is a “natural” way to choose Gal(Q/Q)-invariant Oλ-lattices T ′λ in V ′
λ

and Tλ in Vλ, as in 1.6 of [DFG]. Let W ′
λ := V ′

λ/T ′λ, W ′[λ] = W ′
λ[λ], etc. Let

V ′′
λ := V ′

λ ⊗ Vλ. Note that T ′λ(k ′/2) is analogous to the `-adic Tate module of an
elliptic curve.
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One can show that, given Theorem 1.1, a special case of the general Bloch-
Kato conjecture on special values of L-functions [BK, Fo] demands the existence
of a non-zero element of the Selmer group H1

f(Q,W ′′
λ ((k ′/2) + k − 1)). This is a

subgroup of H1 defined by conditions on the local restrictions. (A Tate twist has
been applied to the coefficient module, corresponding the the point at which the
L-function is evaluated.) It is analogous to the Shafarevich-Tate group appearing in
the rank-zero case of the Birch and Swinnerton-Dyer leading-term conjecture. We
can support the Bloch-Kato conjecture by constructing such an element as follows.

Since k ′/2 is odd and the sign in the functional equation of Lf(s) is (−1)k ′/2,
Lf(k

′/2) = 0. (Note that s = k ′/2 is the centre of symmetry of the functional
equation.) An analogue of the Birch and Swinnerton-Dyer conjecture predicts that
the dimension of H1

f(Q, V ′
λ(k ′/2)) equals the order of vanishing of Lf(s) at s = k ′/2.

If we assume that λ - a` (i.e. that f is “ordinary” at λ), then, given the oddness of
the order of vanishing, theorems of Skinner-Urban[SU] or Nekovář[N] (either will
do) give us that H1

f(Q, V ′
λ(k ′/2)) 6= 0. Scaling to land in H1

f(Q, T ′λ(k ′/2)), then
reducing (mod λ), yields a non-zero element of H1(Q,W ′[λ](k ′/2)).

By (4) we have, for all primes p, bp ≡ 1 + pk−1 (mod λ). Using the fact that
bp = Tr(ρg(Frob−1

p )), this implies that the composition factors of W[λ] (i.e. of ρg)
are Fλ and Fλ(1 − k). With our natural choices of lattices, it is possible to show
that Fλ(1 − k) is a submodule (Theorem 7.3 of [Du3]). Hence W[λ](k − 1) has a
trivial submodule Fλ, so W ′[λ]⊗W[λ](k − 1 + (k ′/2)) has a submodule isomorphic
to W ′[λ](k ′/2).

Hence our non-zero element of H1(Q, W ′[λ](k ′/2)) produces elements of
H1(Q,W ′′[λ]((k ′/2)+k−1), then of H1(Q,W ′′

λ ((k ′/2)+k−1). It is possible to show
that this latter element is non-zero, and satisfies the Bloch-Kato local conditions.

2. Applications of related constructions

(1) Essentially the same construction produces a non-zero element of λ-torsion
in a Selmer group attached to L(Sym2g, (k/2) + k − 1), when (k/2) is odd,
where λ is the modulus of (4). Then, working backwards, the Bloch-Kato
conjecture predicts (in the case that λ is not a congruence prime for g in
Sk) that λ divides L(Sym2g,(k/2)+k−1)

π4k−3(g,g)
. This divisibility may be observed

experimentally [Du1], but it appears to be an open problem to prove it
in general, in contrast to the tensor-product case. For some experimental
evidence in the Hilbert modular case, see also [Du2].

(2) The best understood critical value of L(Sym2g, s) is at s = k, where one
gets a simple multiple of (g, g) ([P], see also (2.5) of [Sh]). Only in the
case k = 2 is (k/2) + k − 1 = k. The above construction may be applied in
the case of g ∈ S2(Γ0(N)) attached to an elliptic curve E/Q. We must have
E(Q) of positive rank (to get the analogue of H1

f(Q, V ′
λ(k ′/2)) 6= 0), and also

a rational point of order ` (to get factors F` and F`(−1) for ρg ' E[`](−1)).
The ratio of (g, g) to the canonical Deligne period is essentially the degree
of the modular parametrisation φ : X0(N) → E. (Let’s suppose that E

is chosen to be optimal in its isogeny class, i.e. φ has minimal degree.)
This leads to predictions about the modular degree, which can be proved.
Specifically, the following is Theorem 1.3 of [Du3].
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Theorem 2.1. Let E/Q be an optimal elliptic curve of conductor N. Sup-
pose that E has a rational point of prime order ` = 5 or 7. Suppose also that
E has a prime p of split multiplicative reduction such that p 6≡ 1 (mod `).
If L(E, 1) = 0 then ` | deg(φ).

This work has been refined and generalised to modular abelian varieties
of higher dimension, by my student Ian Young.

(3) The construction used above depends on having a map from one Galois
module to another, which can be used to carry an element from the coho-
mology of one to the cohomology of the other, providing a candidate for an
element of a Selmer group. For example, in the above case, multiplication
by the rational point of order ` gives a map from E[`] to Sym2E[`]. 7.1(4)
of [DW] is a numerical example in which multiplication by a rational point
of order 7 is likewise used to get from Sym5E[7] to Sym6E[7].

In [Du4] a different map is used, namely the squaring map from E[2] to
Sym2E[2], to try to explain Watkins’ conjecture that 2R divides deg(φ),
where R is the rank of E(Q). 7.2(2) of [DW] is a numerical example in
which the cubing map is used to get from Sym2E[3] to Sym6E[3].

(4) In [CM], the two Galois modules are isomorphic: E[`] ' E ′[`], and the
cohomology class coming from a rational point of infinite order on E is
used to produce an element of order ` in the Shafarevich-Tate group of
E ′, in examples where the Birch and Swinnerton-Dyer conjecture predicts
the latter. In fact, the same congruence of modular forms resulting from
E[`] ' E ′[`] also shows how vanishing of L(E, 1) leads to divisibility by ` of
Lalg(E

′, 1), as explained in [DSW], which contains a generalisation to higher
weight cusp forms.

(5) In [DIK], we have a cuspidal Hecke eigenform f of weight j+2k−2, a cuspidal
Hecke eigenform F of genus 2 and type Symj ⊗ detk (vector valued when
j > 0), and a congruence of Hecke eigenvalues (for all p) µF(p) ≡ ap(f) +

pk−2 + pj+k−1 (mod λ), where λ is a large prime divisor of Lalg(f, j + k)
and µG(p) is the eigenvalue of a genus-2 Hecke operator T(p) acting on F.
In the case j = 0, F is a non-lift congruent to the Saito-Kurokawa lift of f,
while in the case j > 0 the congruence is predicted by Harder’s conjecture
[Ha, vdG]. If ρF is a λ-adic representation of Gal(Q/Q) attached to F, then
the congruence implies that the composition factors of ρF are ρf, Fλ(2−k)
and Fλ(1 − j − k). We may arrange for Fλ(2 − k) to be a submodule,
Fλ(1 − j − k) to be a quotient, with ρf in the middle. Then ρf(2 − k) is
a submodule of ∧2ρF. This can be used to move an element of order λ

in a Selmer group associated to λ | Lalg(f, j + k) [Br], to one in a Selmer
group associated to a certain critical value of the standard L-function of F.
Bloch-Kato then predicts the divisibility by λ of a certain ratio of standard
L-values for F. This divisibility may be proved in the case j = 0, and
confirmed by computation in examples for which j > 0.
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1991/92. Astérisque 206 (1992), Exp. No. 751, 4, 205–249.

[GZ] B. H. Gross, D. B. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84
(1986), 225–320.

[Ha] G. Harder, A congruence between a Siegel and an elliptic modular form, manuscript, 2003,
reproduced in The 1-2-3 of Modular Forms (J. H. Bruinier et. al.), 247–262, Springer-Verlag,
Berlin Heidelberg, 2008.

[Hi] H. Hida, A p-adic measure attached to the zeta functions associated with two elliptic modular
forms, I, Invent. Math. 79 (1985), 159–195.
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