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Abstract. An analogue, for modular abelian varieties A, of a conjecture of
Watkins on elliptic curves over Q, would say that 2R divides the modular de-

gree, where R is the rank of the Mordell-Weil group A(Q). We exhibit some
numerical evidence for this. We examine various sources of factors of 2 in
the modular degree, and the extent to which they are independent. Assuming

that a certain 2-adic Hecke ring is a local complete intersection, and is isomor-
phic to a Galois deformation ring (a 2-adic “R ≃ T” theorem), we show how
the analogue of Watkins’s conjecture follows, under certain conditions on A,
extending and correcting earlier work on the elliptic curve case.

1. Introduction

Let f =
∑∞

n=1 anq
n be a normalised newform of weight 2, for the congruence

subgroup Γ0(N). Let Of and Kf be the ring and the field generated, over Z and
over Q respectively, by the Hecke eigenvalues an. Then K = Kf is a number field
of some degree d = [K : Q], and Of is an order of finite index in the ring of integers

OK of K. We shall think of K as an abstract number field inside Q, with the action
of Gal(Q/Q) producing Galois conjugates f1, . . . , fd of f , with f = f1, but if we fix
an embedding of Q into C then these all become forms with coefficients in C (in
fact in R).

Let J0(N)/Q be the Jacobian of the modular curve X0(N)/Q. The Hecke cor-
respondences Tp (for primes p - N) and Up (for primes p | N) of X0(N) act as
endomorphisms, defined over Q, of J0(N), let’s say by Albanese functoriality. (See
§3 of [Ri1] for a discussion of Picard and Albanese functoriality.) Let T = TZ
be the ring of endomorphisms of J0(N) generated in this way. (Note that T may
also be realised as a ring of linear operators generated by Hecke operators on the
space S2(Γ0(N)) of cusp forms of weight 2 for Γ0(N).) Let If = If,Z = IZ be the
kernel of the homomorphism θf : TZ → Of determined by Tp 7→ ap, Up 7→ ap, so
Of ≃ TZ/If . (Note that If depends only on the Galois conjugacy class of f , in
fact S2(Γ0(N))[If ] is spanned by f1, . . . , fd.) Then A = Af := J0(N)/IfJ0(N) is
a connected abelian variety of dimension d = [K : Q], defined over Q, the modular
quotient associated to f (or equally to any of the fi–the cotangent space to Af (C)
is spanned by these conjugates). Let πf : J0(N)→ A be the projection morphism.
Then there is a dual morphism π∨

f : A∨ → J0(N)∨, but as a jacobian, J0(N) is
naturally isomorphic to its dual abelian variety, via the theta polarisation, so we
may view π∨

f : A∨ → J0(N). The action of T on J0(N) restricts to an action of

T/If ≃ Of on A∨, indeed A∨ is the connected component of the identity in the
kernel of If on J0(N). (Strictly speaking it is I∗f that kills A∨, where ∗ is the Rosati
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involution associated to the theta polarisation of J0(N). But T ∗
p = Tp for p - N

and U∗
p =WNUpWN for p | N , whereWN is the Atkin-Lehner involution, which re-

stricts to the eigenvalue wN (f) = ±1 on A∨.) The homomorphism πfπ
∨
f : A∨ → A

is known to be an isogeny of square degree. (It is the polarisation of A∨ defined
by the pullback of the theta divisor.) The square root of this degree is called the
modular degree of Af . In the case that Kf = Q and A is an elliptic curve, so
A∨ ≃ A, πfπ∨

f : A→ A is multiplication by the degree of the morphism (“modular

parametrisation”) ϕ : X0(N) → A, obtained by using a rational point to embed
X0(N) in J0(N), then composing with πf : J0(N)→ A. In fact, on divisor classes,
π∨
f is ϕ∗ and πf is ϕ∗. In general, the modular degree is 1 if and only if J0(N) is

isomorphic (rather than just isogenous) to the direct sum of A and another abelian
variety.

M. Watkins conjectured [Wa], in the case that A is an elliptic curve, that 2R

(or even the order of the 2-Selmer group) divides the modular degree, where R
is the rank of the group A(Q) of rational points. It is natural to simply extend
this conjecture to modular abelian varieties of any dimension. Since A(Q) ⊗Z Q
is a K-vector space, R is necessarily a multiple of d. According to the Birch-
Swinnerton-Dyer conjecture, R should be the order of vanishing at s = 1 of the

L-function L(A, s), which is the same as
∏d

i=1 L(fi, s). If the sign in the functional
equation of L(f, s) (namely ϵ = −

∏
p|N wp(f), where wp(f) is the eigenvalue of the

Atkin-Lehner involution Wp) is −1, then L(A, 1) = 0, so we would expect R ≥ d
and 2d dividing the modular degree, m. This is amply borne out in numerical
examples in the tables of Stein [Ste]. All the examples with N ≤ 200 and ϵ = −1
are as follows.

N d m
67 2 22

73 2 22

85 2 23

93 2 24

97 3 23

103 2 22

107 2 22

109 3 23

113 3 23

115 2 24

127 3 23

N d m
133 2 24

133 2 24 · 3
137 4 24

139 3 23

145 2 23 · 7
147 2 24

149 3 23

151 3 23

157 5 25

161 2 24

163 5 25 · 3
There are more spectacular examples further along, such as 443D, with d = 12

and m = 213 · 3 · 7, 457B, with d = 15 and m = 215 · 31, and 487E, with d = 17
and m = 217. Without the condition that ϵ = −1, it is often the case that 2d - m.
For example, for 173A, d = 4, ϵ = −1 and m = 24, while for 173B, d = 10, ϵ = 1
but still m = 24. Similarly for 191A,B, with d = 2, 14, m = 22, 281A,B with
d = 7, 16, m = 27, and 367A,B with d = 11, 19, m = 211. There are several similar
pairs of conductor ≤ 500.

Though it is tempting to view the above as good evidence for the direct analogue
of Watkins’s conjecture, we need to be more circumspect. For each prime p | N
let Wp (sometimes known as Wpα , where pα || N) be the Atkin-Lehner involution,
which acts on S2(Γ0(N)), with f an eigenvector. It also acts on X0(N) as an
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involution defined over Q, and as an endomorphism defined over Q on J0(N). (The
same endomorphism by either Picard or Albanese functoriality.) Let W be the
group of order 2s generated by the Wp (where s is the number of primes dividing
N), and let W ′ = W ′(f) be the subgroup (of index 1 or 2) acting as +1 on f .
We shall see in Section 2 that if Af (Q)[2] = {O} then (#W ′)d | m. This then
is an alternative source of powers of 2 in the modular degree. It is easiest to
understand in the case d = 1 that Af is an elliptic curve, where the modular
parametrisation ϕ : X0(N)→ A factors through the quotient morphism X0(N)→
X0(N)/W ′, which has degree #W ′. Note that if Af (Q)[2] ̸= {O} then it is possible
for an element of W ′ to induce translation by a rational 2-torsion point, so for ϕ
to factor only through the quotient of X0(N) by some smaller subgroup of W ′,
contributing some smaller power of 2 to deg ϕ. But we are always guaranteed that
(#W ′/#Af (Q)[2])d | m. We must now admit that, with the exception of 145B,
for which #W ′ = 2 and #Af (Q)[2] = 22, every single instance of 2d | m mentioned
above can be accounted for by this. So to support the analogue of Watkins’s
conjecture we must try harder. In the case that N is prime, the contribution of
Atkin-Lehner involutions is minimal. In this case, and when Af is an elliptic curve,
Watkins has produced numerous examples for which R = 4 and 24 | m, supporting
his conjecture.

IfN is prime and wN = −1 thenW ′ is trivial so does not account for any power of
2 inm. Since ϵ = −wN = 1, L(f, s) vanishes to even order at s = 1, so if L(f, 1) = 0
then it vanishes to order at least 2. Vanishing of L(f, 1) implies vanishing of all
the L(fi, 1), similarly all to order at least 2, so ords=1L(A, s) ≥ 2d, and we expect
that 22d | m. The following table gives all the examples with d > 1 and N < 3650
(found using Magma), and our expectation is fully borne out, supporting the higher-
dimensional analogue of Watkins’s conjecture quite convincingly if one compares
the d = 2 examples with the d = 3, 4 examples.

N d m
1061 2 24 · 151
1567 3 29 · 7 · 41
1693 3 26 · 1301
1913 2 24 · 52 · 61
2029 2 24 · 5 · 269
2081 2 24 · 1319
2293 2 24 · 479
2333 4 28 · 83341
2381 2 24 · 971
2593 4 28 · 67 · 2213

N d m
2609 2 24 · 19 · 61
2843 3 26 · 33 · 7 · 587
2861 2 24 · 11 · 61
2963 2 24 · 31 · 61
3019 2 24 · 3259
3089 2 24 · 5 · 131
3217 3 26 · 7 · 43 · 71
3463 2 26 · 199
3583 2 27 · 17 · 29

We shall assume the following conditions on a modular abelian variety A (i.e.
the quotient of J0(N) attached to a newform f):

(1) N is even and square-free;
(2) A[2](Q) = {O};
(3) A(R) is connected;
(4) #ΦA,p (the group of components of the special fibre of the Néron model)

is odd for each prime p | N ;
(5) 2 - disc(Of ).

We explore the consequences of the assumption that a certain map between a 2-adic
deformation ring RD′ and a completed Hecke ring Tm is an isomorphism, and that
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these rings are local complete intersections. The modular degree is linked to Tm,
and we bound from below the power of 2 dividing it by bounding from below the
power of 2 dividing the order of the reduced cotangent space to RD′ . As in [Du]
(in the elliptic curve case) we produce elements using Galois cohomology classes
coming from rational points, to show that 2R−d would divide the modular degree. In
addition, as well as treating the case of modular abelian varieties of any dimension,
we show that an (in general) even larger power of 2 would divide the modular
degree. There are two ways to do this. One uses independent elements constructed
from newforms g with the same residual mod 2 Galois representation as f , but
different Atkin-Lehner eigenvalues. See Corollary 9.5. The other (using certain
quotients of the original deformation and Hecke rings) shows that the contribution
(#W ′)d of the Atkin-Lehner involutions is independent of the contribution 2R−d

of rational points, by working with the quotient curve X0(N)/W ′. Since (under
the condition (1)) #W ′ ≥ 2, this shows that the assumptions about deformation
rings and Hecke rings imply that 2R | m, in accord with the analogue of Watkins’s
conjecture. See Corollary 12.3.

Acknowledgments. We are grateful to F. Diamond, J. Manoharmayum, W.
Stein and M. Watkins for helpful communications. We are especially indebted to
an anonymous referee for correcting an important error in an earlier version (and in
[Du]), which had 2R in place of 2R−d, and for suggesting that we should determine
whether or not a certain example of Tm is a local complete intersection.

2. The contribution of Atkin-Lehner involutions

Proposition 2.1. With W ′ as above,

(
#W ′

#Af (Q)[2]

)d ∣∣∣m,
where m is the modular degree and d = [K : Q] is the dimension of Af .

Proof. Let P0 be a fixed rational point on X0(N) (for example the cusp ∞). If
w ∈ W ′ then w acts trivially on Af , i.e. if π : J0(N) → A is the projection,
and [D] ∈ J0(N), then π([w(D)]) = π([D]) for all divisors D of degree zero on
X0(N). In particular, for any P ∈ X0(N), π([w(P ) − w(P0)]) = π([(P ) − (P0)]),
so π([w(P ) − (P )]) = π([w(P0) − (P0)]). Applying this to P = w(P0) shows that
π([w(P0) − (P0)]) ∈ A[2]. Since P0 ∈ X0(N)(Q) and w is defined over Q, in fact
π([w(P0)− (P0)]) ∈ A(Q)[2]. It is easy to see that the map w 7→ π([w(P0)− (P0)])
is a homomorphism from W ′ to A(Q)[2]. Let W ′′ be its kernel. This has size at

least #W ′

#Af (Q)[2] , so it suffices to prove that (#W ′′)d | m.

Let X ′′ = X0(N)/W ′′, an algebraic curve over Q, with θ : X0(N) → X ′′ the
quotient morphism. Let J ′′ = J(X ′′) be its Jacobian. Let P ′′

0 be the image of P0

on X ′′. We have embeddings ι : X0(N) ↪→ J0(N) and ι′′ : X ′′ ↪→ J ′′, given by
P 7→ [(P ) − (P0)] and P ′′ 7→ [(P ′′) − (P ′′

0 )] respectively. There is a commutative
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diagram

X0(N)
θ−−−−→ X ′′

ι

y ι′′

y
J0(N)

θ∗−−−−→ J ′′

π

y
A

.

For any w ∈W ′′, π([w(P0)− (P0)]) = O, so π([w(P )−w(P0)]) = π([(P )− (P0)])
becomes π ◦ ι (w(P )) = π ◦ ι (P ), for all P ∈ X0(N). Hence π ◦ ι factors through
X ′′, and therefore, by the universal property of Jacobians, through ι′′ ◦θ. Since the
image of ι generates J0(N), it follows that π factors through θ∗, say

J0(N)
θ∗−−−−→ J ′′ π′′

−−−−→ A.

We have dual maps, composing to π∨:

A∨ π′′∨

−−−−→ J ′′ θ∗

−−−−→ J0(N).

Now

π ◦ π∨ = π′′ ◦ θ∗ ◦ θ∗ ◦ π′′∨ = π′′ ◦ [deg(θ)] ◦ π′′∨ = [#W ′′] ◦ (π′′ ◦ π′′∨).

The order of the kernel of the multiplication map [#W ′′] on A is (#W ′′)2d, hence
(#W ′′)d | m. �

3. Preliminaries on modular curves and p-adic uniformisation of
abelian varieties

Suppose that p || N . Following Deligne and Rapoport [DR], we consider a
certain model X/Zp for the modular curve X0(N)/Qp. It is proper and flat, but

not necessarily regular. Its special fibre X̃/Fp has two irreducible components,
isomorphic to X0(N/p)/Fp, crossing at supersingular points, which are ordinary
double points, defined over Fp2 . Let J0(N)/Zp be the Néron model of J0(N)/Qp,

and let J̃0(N)/Fp be its special fibre, with connected component J̃0(N)0 and group

of components Φ = J̃0(N)/J̃0(N)0. As explained in §2 of [Ri1] (drawing on [Ra1,

SGA7, MR, JL]), J̃0(N)0 is an extension of the abelian variety J0(N/p)/Fp ⊕
J0(N/p)/Fp by a torus TJ , whose character group XJ := HomFp

(TJ/Fp,Gm/Fp) is

isomorphic (as a module for Gal(Fp/Fp)) to H1(G,Z), where G is a graph with two

vertices (one for each component of X̃/Fp) and an edge for each ordinary double
point. The Atkin-Lehner involutionsWp andWN extend to X , and have a modular
interpretation.

Lemma 3.1. Let Frobp be the generator x 7→ xp of Gal(Fp2/Fp). Then Wp acts
as −Frobp on XJ .

Proof. It follows from the modular interpretation ofWp that it permutes the super-

singular points of X̃/Fp (i.e. the edges of G) in the same way as Frobp, but because

it also swaps the components of X̃/Fp (the vertices of G), which Frobp doesn’t do,
the action of Wp on H1(G,Z) is minus that of Frobp. �
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Lemma 3.2. If p || N then the connected component (of the identity) of the special
fibre at p of the Néron model of A (or A∨) is a torus. In other words, A and A∨

have purely toric reduction.

Proof. A is a quotient of, and A∨ a subvariety of, J0(N). Each is killed by the ideal
IZ associated to f . Since f is a newform (in particular, new at p), but the abelian

variety quotient of J̃0(N)0 is J0(N/p)/Fp ⊕ J0(N/p)/Fp, the lemma follows. �

Lemma 3.3. Let B/Qp be an abelian variety with purely toric reduction over Fp.
Let XB and XB∨ be the character groups of the connected components of the special
fibres of the Néron models of B and its dual B∨. Then there is an exact sequence
of groups, respecting the action of Gal(Qp/Qp):

0 −−−−→ XB∨
q−−−−→ Hom(XB ,Q

×
p ) −−−−→ B(Qp) −−−−→ 0.

The group ΦB,p, of components of the special fibre at p of the Néron model of B, is

isomorphic to Hom(XB ,Z)/v ◦ q(XB∨), where v : Q×
p → Q is ordp.

This is a consequence of the theory summarised in [Ra2]. The identification
with XB∨ of the discrete subgroup of the torus by which we quotient out, is from
[SGA7], IX, 14.1.

Lemma 3.4. If ℓ is any prime number, and B/Qp as in Lemma 3.3 above, then

(1) there is, for each n ≥ 1, an exact sequence

0→ Hom(XB , µℓn)→ B[ℓn]→ XB∨/ℓnXB∨ → 0

of Gal(Qp/Qp)-modules;
(2) there is an exact sequence

0→ Hom(XB , Tℓ(µ))→ Tℓ(B)→ XB∨ ⊗ Zℓ → 0

of Gal(Qp/Qp)-modules.

Here, Tℓ(µ) := lim←−n
µℓn = Zℓ(1) and Tℓ(B) := lim←−n

B[ℓn], and the lemma is just

Lemmas 3.3.1 and 3.3.2 of [Ri2], easy consequences of the Snake Lemma.

4. λ-adic and residual representations

Recall that we have the order Of in OK . If we impose the condition 2 - [OK : Of ]

then the natural map from Of/2Of to OK/2OK ≃ ⊕t
i=1(Oλi/λ

Ei
i ) is an isomor-

phism, and similarly Of ⊗ Z2 ≃ OK ⊗ Z2 ≃ ⊕t
i=1Oλi is an isomorphism, where

2OK =
∏t

i=1 λ
Ei
i . Let 1 =

∑t
i=1 ei inOf⊗Z2, where ei is the projection onto the ith

factor. We also denote by λi the ideal λi∩Of of Of , and its image λiOλi⊕⊕j ̸=iOλj

in Of ⊗Z2. Given a module for Of ⊗Z2, tensoring over Of ⊗Z2 with Oλi (via the
projection to that factor) is equivalent to applying ei.

With A = Af , let T2(A) = lim←−n
A[2n] and V2(A) = T2(A)⊗Z2 Q2. For 1 ≤ i ≤ t

let Tλi(A) = eiT2(A), a free Oλi-module of rank 2 with Oλi -linear Gal(Q/Q)-
action, and Vλi(A) = eiV2(A), a 2-dimensional Kλi-vector space with Kλi -linear
Gal(Q/Q)-action. Also let Vi = Tλi(A)/λiTλi(A), a 2-dimensional Fλi -vector space
with Fλi-linear Gal(Q/Q)-action. Let ρi : Gal(Q/Q) → AutOλi

(Tλi) be the rep-

resentation by which Gal(Q/Q) acts on Tλi , and ρi : Gal(Q/Q) → AutFλi
(Vi) its

reduction modulo λi.
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Lemma 4.1. If p || N then ρi|Gal(Qp/Qp)
has the form

(
χ(ap)ω ∗

0 χ(ap)

)
, where ω

is the 2-adic cyclotomic character and χ(ap) is the unramified character such that
χ(ap)(Frobp) = ap = −wp.

Proof. XA∨ and XA are free Z-modules of rank d, with Of -action, so XA∨ ⊗ Q
and XA ⊗Q are 1-dimensional K-vector spaces. It follows that ei(XA∨ ⊗ Z2) and
eiHom(XA, T2(µ)) are free Oλi -modules of rank one. Now Gal(Qp/Qp) acts on
T2(µ) by ω, and on XA∨ and XA by χ(ap) (by Lemma 3.1). The lemma follows
from Lemma 3.4 (2) (with B = A) by applying the projector ei. �

Proposition 4.2. Suppose 2 - [OK : Of ], and let Vi and ρi be as above, for some
1 ≤ i ≤ t. If

(1) N is even and square-free;
(2) A[2](Q) = {O} and
(3) A(R) is connected,

then ρi is absolutely irreducible.

Proof. Let Ui = (eiA[2])[λi]. If Ui is irreducible then necessarily Ui ≃ Vi. Therefore
it suffices to prove that Ui is absolutely irreducible.

It follows from the fact that A(R) is connected (isomorphic to (R/Z)d as a topo-
logical group) that #A[2](R) = 2d. NowH1(A(R),Q) is aK-vector space, necessar-
ily 1-dimensional, from which it follows that eiH1(A(R),Q2) is a 1-dimensionalKλi -
vector space. Then eiH1(A(R),Z2) is a free Oλi -module of rank 1, and eiA[2](R) ≃
ei(H1(A(R),Z)/2H1(A(R),Z)) ≃ ei(H1(A(R),Z2)/2H1(A(R),Z2)) is a free (Oλi/2Oλi)-
module of rank 1. Then Ui(R), i.e. the Fλi-subspace of invariants of complex
conjugation in Ui, is 1-dimensional.

Now any Gal(Q/Q)-invariant line in Ui⊗Fλi is necessarily made up of invariants
under complex conjugation (since the only possible eigenvalues are 1 and −1 = 1 in
Fλi). Hence such a line must be Ui(R)⊗Fλi

Fλi , so Ui(R) is a Gal(Q/Q)-invariant
line in Ui, assuming that such a line exists. Let χ be the character by which
Gal(Q/Q) acts on Ui(R). If p | N then by Lemma 4.1, χ|Gal(Qp/Qp)

is trivial.

(Note that both ω and the χ(ap) in that lemma become trivial modulo λi.) Also,
if p - N then χ is unramified at p (using the fact that 2 | N). The only character
of Gal(Q/Q) unramified at all p is the trivial character, so χ is trivial, and any
non-zero element of Ui(R) is a rational point of order 2 on A, contradicting (2). �

Proposition 4.3. Suppose that p || N and that #ΦA,p is odd. Then, for each i,
there exists γ ∈ Ip (the inertia group at p) such that the ∗ in the matrix of Lemma
4.1 is not divisible by λi.

Proof. By the last part of Lemma 3.3, using the oddness of #ΦA,p, v ◦ q in-
duces an isomorphism ei(XA∨ ⊗ ((1/2)Z/Z)) ≃ ei(Hom(XA, (1/2)Z/Z)). The left-
hand side (rather its image under q) represents the quotient of ei(A[2](Qp)) by
eiHom(XA, µ2). We need to show that Ip acts non-trivially on any representa-
tive of a non-zero element of this quotient, but this is true because it acts non-

trivially on any element of Hom(XA,Q
×
p ) that maps under v to a non-zero element

of Hom(XA,Q/Z). �
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5. Pairings

Recall that 2OK =
∏t

i=1 λ
Ei
i , and we are assuming that 2 - [OK : Of ]. From

now on we shall assume that all Ei = 1, i.e. that 2 is unramified in OK , since this
will be necessary anyway once we consider deformation rings and Hecke rings, and
makes the exposition slightly simpler from this point onwards. With 2 - [OK : Of ],
this is equivalent to 2 - disc(Of ). Let Fi be the degree of the prime divisor λi.
Recall that Vi := Tλi(A)/λiTλi(A), but since 2 is unramified we also have now
Vi ≃ ei(A[2]). Let V ∗

i = HomF2(Vi,F2), which is also naturally a 2-dimensional
Fλi

-vector space. Let Wi = Sym2Vi, i.e. the subspace of symmetric tensors in
Vi ⊗Fλi

Vi, and W
∗
i = HomF2(Wi,F2). These are 3-dimensional Fλi-vector spaces.

We have Weil pairings

A[2]×A∨[2]→ µ2,

T2(A)⊗ T2(A∨)→ T2(µ).

With respect to these pairings, the Hecke operators Tp and Up, which generate Of ,
are self-adjoint. This follows from the discussion in §3 of [Ri1], and from Lemma
16.2(a) of [Mi]. Hence for i ̸= j, ei(A[2]) and ej(A

∨[2]) are orthogonal, and likewise
ei(T2(A)) and ej(T2(A

∨)) are orthogonal. We can then restrict to perfect pairings

ei(A[2])× ei(A∨[2])→ µ2,

ei(T2(A))× ei(T2(A∨))→ T2(µ).

Assuming irreducibility of ρi, as in the conclusion of Proposition 4.2, the po-
larisation A∨ → A from the introduction necessarily identifies ei(T2(A

∨)) with
λri ei(T2(A)) for some r, then re-scaling we get ei(T2(A

∨)) ≃ ei(T2(A)), hence per-
fect pairings

Vi × Vi → µ2,

Tλi(A)⊗ Tλi(A)→ T2(µ).

In particular, we have an isomorphism V ≃ V ∗, respecting the actions of Fλ and
Gal(Q/Q). (We drop the subscripts i temporarily, imagining a fixed choice to have
been made.)

Lemma 5.1. Under the isomorphism V ≃ V ∗ we have, for any x ∈ V and α, β ∈
Fλ, (αx)(βx) = 0, where αx ∈ V ∗ is applied to βx ∈ V .

Proof. It suffices to show that, under the Weil pairing [, ] : Tλ(A)×Tλ(A)→ Z2(1),
we have, for any α, β ∈ Oλ and x ∈ Tλ(A), [αx, βx] = 0. The Weil pairing [, ] may
be viewed as a Z2-linear map from ∧2Oλ

Tλ(A) (a free Oλ-module of rank one) to
Z2(1). (The wedge is over Oλ because Tp and Up are self-adjoint.) But there is a
Z2-linear isomorphism Oλ ≃ HomZ2(Oλ,Z2), with γ 7→ (β 7→ trOλ/Z2

(γβ)). Hence
there is an Oλ-linear, skew-symmetric pairing [, ]′ : Tλ(A) × Tλ(A) → Oλ(1) such
that [, ] = tr([, ]′). Since the Oλ submodule spanned by x is isotropic for [, ]′, the
lemma follows. �

Using the trace as in the above proof, we see that there is a natural isomorphism
between V ∗ := HomF2(V,F2) and HomFλ

(V,Fλ). It follows, since the pairing is
skew-symmetric, that W := Sym2V , inside V ⊗ V ≃ V ∗ ⊗ V , may be identified
with ad0(V ) = {A ∈ HomFλ

(V, V ) : tr(A) = 0}. (This W is not to be confused
with the group of Atkin-Lehner involutions!) Also, by composing with the trace, we
may identify W ∗ := HomF2(W,F2) with the set of Fλ-valued quadratic polynomial
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functions on V , i.e. with the symmetric quotient of V ∗ ⊗Fλ
V ∗. The following is a

direct consequence of Lemma 5.1.

Lemma 5.2. For any x ∈ V (which may be viewed as an element of V ∗ using the
isomorphism V ≃ V ∗), and α, β ∈ Fλ, we have (αx2)(βx⊗ x) = 0.

6. A Selmer group

Let G∞ := Gal(C/R) and, for each prime number p, Gp := Gal(Qp/Qp). All of

these are considered as subgroups of Gal(Q/Q), though this depends on choices of
embeddings of Q in C and the Qp. Let Ip be the inertia subgroup at p. We define a

Selmer group H1
D′(Q,W ) := {c ∈ H1(Q,W )| resp(c) ∈ Lp ∀ primes p ≤ ∞}, where

the subspaces Lp ⊂ H1(Gp,W ) are defined as follows.

(1) L∞ := H1(G∞,W ). Its annihilator in H1(G∞,W
∗) with respect to the

local Tate duality pairing is L⊥
∞ = {0}.

(2) Given a prime p | N , choose a basis {x, y} for V with respect to which Gp

acts via a matrix as in Lemma 4.1. Let W 0 := ⟨x⊗ x⟩ and
Lp := ker(H1(Gp,W )→ H1(Gp,W/W

0)).

(3) At all finite primes p - N let Lp = H1(Gp/Ip,W
Ip) (i.e. its image under

inflation), and note that L⊥
p = H1(Gp/Ip, (W

∗)Ip).

Lemma 6.1. Suppose that p | N .

(1) Lp ≃ H1(Gp,W
0);

(2) #Lp = 22F if p ̸= 2;
(3) #L2 = 23F .

Proof. Let {x, y} be a basis for V as in Lemma 4.1. Take the cohomology, for Gp,
of the exact sequence 0 → W 0 → W → W/W 0 → 0. The H0-part is exact. If we
assume #ΦA,p is odd, and use Proposition 4.3, then it looks like this:

0→ ⟨x⊗ x⟩ → ⟨x⊗ x, x⊗ y + y ⊗ x⟩ → ⟨[x⊗ y + y ⊗ x]⟩ → 0,

but it is exact even without that assumption. So

Lp ≃ H1(Gp,W
0) ≃ Hom(Gp, (F2)

F ) ≃ (Q×
p /(Q×

p )
2)F .

(Note that W 0 ≃ FF
2 as abelian groups.) Now dimF2

(Q×
p /(Q×

p )
2) =

{
2 if p ̸= 2;

3 if p = 2.

�

We have defined a Selmer group H1
D′(Q,W ). We may similarly define a dual Selmer

group H1
D′∗(Q,W ∗) using the dual local conditions L⊥

v , for all places v of Q.

Lemma 6.2. Assume the conditions of Proposition 4.2 (and that E = 1). Assume

also that for each p | N , #ΦA,p is odd. Then #H1
D′(Q,W ) ≥ #H1

D′∗(Q,W ∗) 2F

#H0(Q,W∗) .

(There is also a Tate twist by 1 attached to W ∗, but it doesn’t show up, since
the cyclotomic character modulo 2 is trivial.)

Proof. By Theorem 2.18 of [DDT] (based on Proposition 1.6 of [Wi]),

#H1
D′(Q,W )

#H1
D′∗(Q,W ∗)

=
#H0(Q,W )

#H0(Q,W ∗)

∏
places of Q

#Lv

#H0(Gv,W )
.
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Now #H0(Q,W ) ≥ 2F since it contains the Fλ-subspace spanned by x⊗ y+ y⊗x,
where {x, y} is any Fλ-basis for V . To see this, note that any element of Gal(Q/Q)

acts via some matrix

(
a b
c d

)
, with a, b, c, d ∈ Fλ. This sends x ⊗ y + y ⊗ x to

2acx ⊗ x + 2bdy ⊗ y + (ad + bc)(x ⊗ y + y ⊗ x) = (ad − bc)(x ⊗ y + y ⊗ x). Now
ad− bc = 1, since det ρ is the 2-adic cyclotomic character, which is trivial mod 2.

In the product we shall show that the contributions from 2 and ∞ cancel out,
and that the contributions from all other places are trivial.

(1) For p - N∞, #Lp = #H1(Gp/Ip,W
Ip) = #H0(Gp,W ).

(2) For p | N with p ̸= 2, we have #Lp = 22F by Lemma 6.1, but also
#H0(Gp,W ) = 22F , since H0(Gp,W ) is spanned over Fλ by {x ⊗ x, x ⊗
y + y ⊗ x}. This uses Proposition 4.3.

(3) #L2 = 23F , by Lemma 6.1, and #H0(G2,W ) = #⟨x⊗x, x⊗y+y⊗x⟩ = 22F

(again using Proposition 4.3), so #L2

#H0(G2,W ) = 2F .

(4) Let G∞ = ⟨σ⟩. Choose a basis {x, y} for V such that σ acts as

(
0 1
1 0

)
.

(That we may do so follows from the assumption that A(R) is connected.)
Then #H0(G∞,W ) = #⟨x ⊗ x + y ⊗ y, x ⊗ y + y ⊗ x⟩ = 22F . If f ∈
Z1(G∞,W ) (the group of 1-cocycles) then f(σ2) = 0 so f(σ) + f(σ)σ = 0,
so f(σ) ∈ H0(G∞,W ) = ⟨x⊗x+ y⊗ y, x⊗ y+ y⊗x⟩. Modding out by the
coboundaries (σ− 1)W = ⟨x⊗x+ y⊗ y⟩, we find that #H1(G∞,W ) = 2F

and #L∞
#H0(G∞,W ) =

1
2F

.

�

Lemma 6.3. Let i :W ↪→ V ⊗V (i.e. i : ad0(V ) ↪→ ad(V )) be the inclusion. Then
the kernel of i∗ : H1(Q, ad0(V )) → H1(Q, ad(V )) is a 1-dimensional Fλ-vector
space. Moreover, it is contained in H1

D′(Q,W ).

Proof. Consider the short exact sequence

0 −−−−→ ad0(V ) −−−−→ ad(V )
tr−−−−→ Fλ −−−−→ 0.

Note that the Galois action on the Fλ is trivial, because the trace is invariant under
conjugation. It is easy to see from (4) in the proof of the previous lemma that
H0(G∞,W ) = H0(G∞, V ⊗V ), from which it follows that H0(Q,W ) = H0(Q, V ⊗
V ), giving us the first part of this lemma. Take any elementM ∈ ad(V ) of non-zero
trace (equivalently a non-symmetric element of V ⊗ V ). Then ker(i∗) is generated,
as an Fλ-vector space, by a class represented by the cocycle σ 7→ σ(M)−M . Given
a p | N , and a basis {x, y} of V as above, we may adjustM by an element of ad0(V )
(only changing the cocycle by a coboundary) to get M to be a scalar multiple of
y ⊗ x. Then one sees easily that, for σ ∈ Gp, σ(M) −M ∈ ⟨x ⊗ x⟩ = W 0, as
required. �

7. An application of the squaring map

We retain from earlier the assumptions

(1) N is even and square-free;
(2) A[2](Q) = {O};
(3) A(R) is connected;
(4) #ΦA,p is odd for each prime p | N ;
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(5) 2 - disc(Of ).

We choose an i with 1 ≤ i ≤ t, with λ = λi of degree F . As above, V = Vi =
ei(A[2]), W = Sym2V . We defined a Selmer group H1

D′(Q,W ) and a dual Selmer
group H1

D′∗(Q,W ∗), and we proved an inequality relating their orders.
Applying ei to the descent map, we get ψ : ei(A(Q)/2A(Q)) ↪→ H1(Q, ei(A[2])) ≃

H1(Q, V ∗) (using the isomorphism V ≃ V ∗). Then we have the squaring map
s : V ∗ → W ∗, which squares linear functions to produce quadratic functions, and
is F2-linear because squaring is additive in characteristic 2. It is also, by definition
of the Galois action on W ∗ induced by that on V ∗, Gal(Q/Q)-equivariant. There
is an induced map s∗ : H1(Q, V ∗)→ H1(Q,W ∗).

Lemma 7.1. The kernel of s∗ has size 2F

#H0(Q,W∗) .

Proof. Since #H0(Q, V ∗) = #A[2](Q) = 1, it suffices to show that #H0(Q,W ∗/V ∗) =
2F , i.e. that H0(Q,W ∗/V ∗) is the whole of W ∗/V ∗ (i.e. W ∗/s(V ∗)), spanned

over Fλ by the image of xy. But this is true, because under

(
a b
c d

)
, xy goes

to (ad + bc)xy + acx2 + bdy2 ≡ (ad − bc)xy in W ∗/V ∗, and, as already noted,
ad− bc = 1. �

Proposition 7.2. If P ∈ A(Q) represents an element of ei(A(Q)/2A(Q)) then
s∗ψ(P ) ∈ H1

D′∗(Q,W ∗).

Proof. We need to check that resv(s∗ψ(P )) ∈ L⊥
v for all places v of Q.

(1) It is well-known that ψ(P ) is unramified at all primes p - N∞. The same
is then true for s∗ψ(P ).

(2) Let G∞ = ⟨σ⟩, acting by

(
0 1
1 0

)
with respect to a chosen Fλ-basis {x, y}

of V ∗, as in the proof of Lemma 6.2. If f ∈ Z1(G∞, V
∗) is a cocycle

then, again as in the proof of Lemma 6.2, f(σ) ∈ (V ∗)G∞ = ⟨x + y⟩. But
x + y = xσ − x, so H1(G∞, V

∗) = {0}. Necessarily then res∞(ψ(P )) = 0,
so res∞(s∗ψ(P )) ∈ L⊥

∞ = {0}.
(3) Now take a prime p | N . Looking at Lemma 3.3, P is represented by

some w ∈ Hom(XA,Q
×
p ) (determined up to multiplication by any element

of q(XA∨)). If we choose u ∈ Hom(XA,Q
×
p ) with u2 = w, then, for any

σ ∈ Gp, ψ(P )(σ) is represented by uσ/u. Here the division is in the im-

age, and the action of Gp is simultaneously on XA and Q×
p . Recall that

on the former the action is unramified, with Frobp acting as ap = −wp.
Anyway, (uσ/u)2 = wσ/w ∈ q(XA∨), since P is fixed by Gp. Applying
the valuation map, v(w) = v(wσ) ∈ Hom(XA,Z), so v(wσ/w) = 0 (if
wp = −1) or 2v(w) (if wp = 1). In the former case wσ/w = 1 is the
only possibility, while in the latter case the alternative is that v(w) rep-
resents an element of order 2 in ΦA,p (see the last part of Lemma 3.3),
contrary to our assumption that ΦA,p has odd order. Hence (uσ/u)2 = 1,
so ψ(P )(σ) ∈ eiHom(XA, µ2) = ⟨x⟩, and s∗ψ(P )(σ) ∈ ⟨x2⟩. It follows
from Lemma 5.2 that resp(s∗ψ(P )) kills H

1(Gp,W
0) under the local Tate

duality pairing, hence that resp(s∗ψ(P )) ∈ L⊥
p .

�
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Corollary 7.3. Assume the conditions (1)-(5) listed at the beginning of this section.

(1) #H1
D′(Q,W ) ≥ 2Fir, where r = dimK(A(Q)⊗Q) = 1

d rankZA(Q).

(2) In fact, #H1
D′(Q,W ) is at least the size of the ei part of the Selmer group

for multiplication by 2 on A/Q.

To get (1), simply combine Lemmas 6.2, 7.1 and Proposition 7.2, noting that
#ei(A(Q)/2A(Q)) = 2Fir. To get (2), observe that the proof of Proposition 7.2
only depends on the element of H1(Q, V ∗) being everywhere locally the image of a
rational point.

8. A deformation problem

Again, we retain the assumptions (1)-(5) of the previous section. We have chosen
an i with 1 ≤ i ≤ t, with λ = λi of degree F . As above, V = Vi = ei(A[2]),
W = Sym2V ≃ ad0(V ) as an Fλ[Gal(Q/Q)]-module. We have the representation ρ
of Gal(Q/Q) on V , a 2-dimensional Fλ-vector space.

Let C be the category whose objects are complete noetherian local Oλ-algebras
with residue field Fλ, and whose morphisms are local Oλ-algebra homomorphisms.
If we choose any basis for V then we have ρ : Gal(Q/Q) → GL2(Fλ). If R ∈ C, a
lifting ρ : Gal(Q/Q)→ GL2(R) is said to be of type D if and only if the following
conditions hold:

(1) ρ is unramified outside N ;

(2) For any prime p | N , ρ|Gp ∼
(
ωχ−1 ∗
0 χ

)
, where ω is the restriction of the

2-adic cyclotomic character, and χ is any unramified character (not fixed);
(3) det ρ = ω.

Proposition 8.1. There is a universal coefficient ring RD and a universal defor-
mation of ρ of type D:

ρunivD : Gal(Q/Q)→ GL2(RD)

(see §§8 and 10 of [Ma] for precise definitions).

Proof. The existence of a universal ring for deformations of ρ subject only to the
condition (1) above follows from Proposition 2 in §20 of [Ma]. Note that ρ is
absolutely irreducible, by Proposition 4.2. The determinant condition (3) is handled
by §24 of [Ma]. For p ̸= 2, that (2) is a deformation condition is part of the
proposition in §29 of [Ma]. It may be proved in the same way even for p = 2,
replacing the γ in Lemma 1 of §29 of [Ma] (a topological generator of the 2-part of
the tame quotient of Ip) by an element as in Proposition 4.3. �

Let ρ : Gal(Q/Q) → GL2(Oλ) be the lifting of ρ arising from the action of
Gal(Q/Q) on Tλ(A) (with a chosen Oλ-basis lifting the chosen Fλ-basis of V ). This
is obtained (up to strict equivalence) from ρD by composing with some homomor-
phism πR : RD → Oλ. Let PR := ker(πR).

Recall that A is associated to a particular Gal(Q/Q)-orbit of newforms for Γ0(N),
represented by f . Forms in the same orbit have the same sequence (wp) of eigenval-

ues for the Atkin-Lehner involutions. Fixing an embedding of Q into Q2, each new-
form for Γ0(N) may be considered to have coefficients in Q2, and each Gal(Q/Q)-
orbit may be subdivided into G2-orbits, where G2 := Gal(Q2/Q2). Now let g be
any newform for Γ0(N) and, for some fixed ordering of the s primes p | N , consider
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the vector v(g) := ((wp(g) − wp(f))/2)p|N ∈ Fs
2. It has a 1 where wp(g) ̸= wp(f),

zeroes elsewhere. Now consider only those g such that all the Hecke eigenvalues of
g lie in an unramified extension of Q2 and become congruent (mod 2) to those of
f , i.e. the same in F2. (There will be at most one such g in each G2-orbit.) Define
a matrix B whose rows are the v(g), for all such g. Let k be the rank of B. Note
that k ≤ s, the number of primes dividing N .

Proposition 8.2.
#HomOλ

(PR/P2
R,Fλ) ≥ 2F (r−1+k).

It is only because ℓ = 2 that we can have congruences between newforms with
different Atkin-Lehner eigenvalues.

Proof. Corollary 7.3 tells us that #H1
D′(Q,W ) ≥ 2Fr. Given a cocycle c repre-

senting an element of H1
D′(Q,W ) = H1

D′(Q, ad0(V )), in the standard way we may

produce a representation ρc : Gal(Q/Q) → GL2(Fλ[ϵ]) (where ϵ
2 = 0), by putting

ρc(σ) = ρ(σ)(I + c(σ)ϵ), for all σ ∈ Gal(Q/Q). This lifts ρ, is unramified at p - N
(since ρ and c are) and has the same determinant as ρ (since c(σ) has trace 0).
Thus the conditions (1) and (3) are satisfied. At p | N , choosing a basis {x, y}
for V as in the proof of Lemma 6.1, the image of c is contained in W 0 = ⟨x ⊗ x⟩

which, under the isomorphism W ≃ ad0(V ), corresponds to

(
0 ∗
0 0

)
, using Lemma

5.1. Hence the diagonal entries for ρc(σ) are the same as those for ρ(σ), for any
σ ∈ Gal(Qp/Qp), so the condition (2) is satisfied, in fact for each p | N it is the same

unramified character χ for both ρ and ρc. (Actually, H1
D′(Q,W ) maps to the re-

duced cotangent space for a deformation problem D′ with stronger local conditions,
where the unramified characters for each p | N are fixed.)

By the universal property, there is an Oλ-linear homomorphism θc : RD → Fλ[ϵ]
inducing ρc. Looking at the coefficient of ϵ gives an element ϕc ∈ HomOλ

(PR/P2
R,Fλ).

Let i∗ : H1(Q, ad0(V )) → H1(Q, ad(V )) be the map induced by the inclusion i :
ad0(V ) ↪→ ad(V ). By a standard argument, the group homomorphism i∗(H

1
D′(Q,W ))→

HomOλ
(PR/P2

R,Fλ) given by i∗[c] 7→ ϕc is an injection. But, as pointed out by the
referee, and proved in Lemma 6.3 above, i∗ has a non-trivial kernel, which is even
contained in H1

D′(Q,W ). So we can deduce only that #HomOλ
(PR/P2

R,Fλ) ≥
2F (r−1).

Now, as above, consider g such that all the Hecke eigenvalues of g lie in an
unramified extension of Q2 and become congruent (mod 2) to those of f . Then
there is a representation ρg : Gal(Q/Q)→ GL2(Og) lifting ρ, where Og is the ring
of integers in the finite extension of Q2 generated by the ap(g), which must in fact
be the unique unramified extension with residue field Fλ, in particular Og ≃ Oλ.
This ρg is a lifting of type D, for the same reason that ρf = ρλ is (see Lemma 4.1).
Hence there is a corresponding local Oλ-algebra homomorphism θg : RD → Og. If
R ∈ PR then θf (R) = πR(R) = 0, so θg(R) ∈ λOg. (This uses the assumption
that the Hecke eigenvalues of g lie in an unramified extension of Q2, not just that
they have the same images in F2 as those of f .) We can define an element ϕg of
HomOλ

(PR/P2
R,Fλ) by R 7→ (θg(R)/2) (mod λOg). (Recall that 2 is unramified

in Oλ, so 2 is a uniformising element for λ.)

For each p | N , we have ρg|Gal(Qp/Qp)
∼

(
ωχ−1

g,p ∗
0 χg,p

)
, with χg,p an unramified

character such that χg,p(Frobp) = −wp(g). Let χuniv
D,p be the analogous character
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for the universal representation, and define Rp = wp(f) + χuniv
D,p (Frobp). Then

Rp ∈ PR and ϕg(Rp) = (wp(f) − wp(g))/2. If an Fλ-linear combination of the
vectors (ϕg(Rp))p|N is non-zero, then so is the corresponding linear combination of

the ϕg. For [c] ∈ H1
D′(Q,W ), (ϕc(Rp))p|N is the zero vector, since ρ|Gal(Qp/Qp)

and

ρc|Gal(Qp/Qp)
have the same diagonal entries, as already noted. The (ϕg(Rp))p|N are

the rows of the matrix B. Therefore, to the r− 1 we already had from H1
D′(Q,W ),

we can add a further k to the Fλ-dimension of HomOλ
(PR/P2

R,Fλ). �

Remark. In [Du], the first-named author (in the elliptic curve case) asserted
that for odd p | N the local subgroups Lp, defining a Selmer group H1

D(Q,W ) that

maps onto HomOλ
(PR/P2

R,Fλ), are H
1(Gp/Ip,W

Ip), i.e. ker(H1(Gp, ad
0(V )) →

H1(Ip, ad
0(V ))). In fact it should be ker(H1(Gp, ad

0(V )) → H1(Ip, ad(V ))). (See
Proposition 3 in §26 of [Ma].) There would be no difference in odd residue character-

istic, where the matrix n at the end of §29 of [Ma] can be replaced by

(
b/2 ∗
−a −b/2

)
∈

ad0(V ), but here where ℓ = 2 we cannot do this.

9. Hecke rings and the modular degree

Let T = TZ be as in the introduction. Let ψf : T → Fλ be the homomorphism
determined by Tp 7→ ap(f) (mod λ), Up 7→ ap(f) (mod λ), and let m be the maxi-

mal ideal of T that is the kernel of ψf . For g as in the previous section, the same

m is also the kernel of a similarly defined ψg. We denote also by m the ideal gen-
erated by the image of m in T⊗ Z2. The localisation or completion Tm is a direct
summand of T ⊗ Z2. It is isomorphic to the subring of

∏
g Og generated by the

(ap(g))g, where p runs over all primes. (Note that it follows from the oddness of the
#ΦA,p that N is the minimal level for modular liftings of ρ, c.f. Proposition 4.3, so
no newforms of level strictly dividing N appear in this product.) Now the product
is over G2-orbits of g such that all ap(f) and ap(g) become the same in F2, but
without the earlier condition about the ap(g) lying in an unramified extension of
Q2. Equivalently, g and f have isomorphic residual representations. Although Og

is no longer necessarily isomorphic to Oλ, it is an Oλ algebra, since the congruence
forces it to have the same residue field Fλ, and Oλ is the ring of integers in the
unique unramified extension of Q2 with that residue field.

Lemma 9.1. The localisation T2(J0(N))m of the 2-adic Tate module of J0(N) is
free of rank 2 over Tm.

This follows from Proposition 2.4 of [Bz]. Note that because #ΦA,2 is odd, the
proof of Proposition 4.3 shows that ρ|G2 is trés ramifié, hence by Proposition 8.2
of [Ed] that ρ is not finite at 2. Furthermore, ρ(Gal(Q2/Q2)) is not contained in
the scalar matrices, by Proposition 4.3.

The action of Gal(Q/Q) on T2(J0(N))m gives a representation ρT : Gal(Q/Q)→
GL2(Tm), lifting ρ. We can obtain from it each representation ρg by composing
with ψg : Tm → Og such that Tp 7→ ap(g), Up 7→ ap(g). Given also how Tm is a
subring of

∏
g Og, we may deduce from the fact that each ρg is of type D that so is

ρT. Hence ρT arises from ρunivD via an Oλ-algebra homomorphism θ : RD → Tm.

Hypothesis 9.2. θ is an isomorphism and RD ≃ Tm is a local complete intersec-
tion.
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Let PT be the kernel of ψf : Tm → Oλ. Let I = AnnTm
(PT) and η = ψf (I). As

in §4.4. of [DDT], η is non-zero, and Oλ/η ≃ Tm/(PT + I).

Lemma 9.3. Let If be the ideal of T described in the introduction, so T/If ≃ Of .
Suppose that 2 - [OK : Of ]. Viewing Tm as a subring of T⊗ Z2, PT ⊆ If ⊗ Z2.

Proof. Among the G2-orbits into which the Gal(Q/Q)-orbit of f breaks up, only
that of f is involved in the product

∏
g Og into which Tm embeds. If this were not

the case then Of ⊗ Z2, mapped to
∑t

i=1Oλi , would land in a subring defined by a
condition that the entries in two specific positions are the same in the residue field
(like all the entries in Tm ⊆

∏
g Og), contrary to 2 - [OK : Of ]. Hence any element

of PT is not only in the kernel of the homomorphism ψf : Tm → Oλ, but also in
the kernel of the extended θf : T⊗ Z2 → OK ⊗ Z2, which is If ⊗ Z2. �

Theorem 9.4. Assume the conditions (1)-(5) from the introduction (repeated at
the beginning of Section 7). Let r = dimK(A(Q)⊗Q) and ki = k as in Proposition
8.2. Then, assuming Hypothesis 9.2, 22F (r−1+ki) divides the order of ei(ker(π◦π∨)).

If r = 0 then r − 1 should be replaced by 0.

Proof. By Theorem 5.3 of [DDT], Hypothesis 9.2 is equivalent to #(PR/P2
R) =

#(Oλ/η). Then by Proposition 8.2, 2F (r−1+ki) divides #(Oλ/η), so λ
r−1+ki divides

η. Recall that 2 is a uniformiser for λ, so equivalently 2r−1+ki divides η, and
η = (2S) for some S ≥ r − 1 + ki.

Let If be the ideal of T defined in the introduction, and let S′ ≥ S be such that

2S
′−S kills any 2-torsion in the quotient by π∨(A∨) of the kernel of If on J0(N) .

Since Oλ/η ≃ Tm/(PT + I), we may write 2S = p+ i, with p ∈ PT, i ∈ I and 2 - i
in Tm. As vectors, i = (2S , 0, . . . , 0) and p = (0, 2S , . . . , 2S).

By Lemma 9.1, T2(J0(N))m projects to a subgroup G of J0(N)[2S
′
] isomorphic

to (Tm/2
S′
)2. (It may help to think of Tm just as a free Z2-module.) Let {g1, g2}

be a (Tm/2
S′
)-basis for G. Since I annihilates PT, PT kills i(G), so Tm acts on

i(G) through Tm/PT ≃ Oλ. It follows from the fact that 2 - i in Tm that ig1 and

ig2 are linearly independent over Oλ/2
S′
, so i(G) is free of rank 2 over Oλ/2

S′
.

Extending θf : T → OK to θf : T ⊗ Z2 → OK ⊗ Z2, since ei ◦ θf : T → Oλ

factors through ψf : Tm → Oλ, if t ∈ If then the image of t in Tm is in PT, so

kills i(G). Hence i(2S
′−SG), which is isomorphic to (Oλ/2

S)2 ≃ (Oλ/η)
2, lies in

π∨(A∨). Moreover, if P ∈ i(2S′−SG), say P = i(Q), then, recalling that 2S = p+ i,
P = i(Q) = 2SQ − pQ = −pQ. Since, by Lemma 9.3 p ∈ PT ⊆ Tm may be
2-adically approximated by some t ∈ If that acts the same way on Q, we see

that P ∈ IfJ0(N), so P ∈ kerπ. Hence i(2S
′−SG), viewed as a subgroup of

A∨ via the injection π∨ : A∨ → J0(N), is inside ker(π ◦ π∨). As already noted,

ei ◦ θf : T → Oλ factors through ψf : Tm → Oλ, so in fact i(2S
′−SG) is inside the

image of ei(ker(π◦π∨)). Since i(2S
′−SG) has order 22S ≥ 22F (r+ki), the proposition

follows. �

Putting together the different contributions for 1 ≤ i ≤ t, we get the following.

Corollary 9.5. Assume the conditions (1)-(5) from the introduction (repeated at
the beginning of Section 7), and also Hypothesis 9.2. Then the modular degree of A
is divisible by 2R−d+

∑
Fiki , where R = rank(A(Q)) and ki is as in Proposition 8.2.
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If R = 0 then R − d should be replaced by 0. As in Corollary 7.3(2), the
factor 2R may be replaced by the order of the 2-Selmer group for A. Note that
2R−d+

∑
Fiki ≤ 2R−d+ds = 2d(r−1+s), where s is the number of prime factors of N .

By Corollary 5.20 and Theorem 5.27 of [DDT], #(PT/P2
T) = #(Oλ/η) is equiv-

alent to Tm being a local complete intersection. In Proposition 8.2 we may replace
PR/P2

R by PT/P2
T if we delete the r−1. In the proof we simply replace the element

Rp = wp(f)+χ
univ
D,p (Frobp) of PR by the element wp(f)+Up of PT. Then, repeating

the proof of Theorem 9.4, we obtain the following.

Proposition 9.6. Assume the conditions (1)–(5) of the introduction (except we
don’t need to assume that #ΦA,p is odd for odd p). If Tm is a local complete

intersection, then the modular degree of A is divisible by 2
∑

Fiki .

The reason that we cannot dispense with conditions (2) and (3) is that Propo-
sition 2.4 of [Bz] relies on the irreducibility of ρ, which we get from Proposition
4.2.

10. Examples

The conditions (1)–(5) are chosen to make life easy. In this section we show that
they are not so strong as to make it impossible to find examples. We have repeatedly
used Sturm’s bound [Stu]: if newforms f and g of weight κ for Γ0(N) have Hecke

eigenvalues an(f) ≡ bn(f) (mod λ) for all n ≤ κN
12

∏
p|N

(
1 + 1

p

)
, then an(f) ≡

bn(f) (mod λ) for all n. The data in Stein’s table “q-expansions of eigenforms on
Γ0(N)” [Ste] goes far enough to confirm that apparent congruences really hold.

10.1. Elliptic curves. For d = 1, the optimal elliptic curves with N ≤ 250 satisfy-
ing conditions (1)–(5) (of which condition (5) is automatic), and of rank R = 0, are
26a1, 26b1, 38a1, 38b1, 106a1, 106d1, 110a1, 110b1, 110c1, 118c1, 118d1, 170c1,
170d1, 170e1, 174a1, 174b1, 174c1, 174e1, 182b1, 182c1, 182d1, 182e1, 186a1,
186b1, 186c1, 202a1, 222a1, 222b1, 222d1, 222e1, 246a1, 246b1, 246f1, 246g1 (as
listed in [Cr1]). Note that if the conditions hold for an elliptic curve then they
hold for any isogenous elliptic curve, since the irreducibility of ρ rules out rational
2-isogenies. Recall that E(R) is connected if and only if ∆ < 0, and that, for p || N ,
#ΦE,p is the exponent of p in ∆. For 26a1: y2 + xy + y = x3 − 5x− 8 (for which
#E(Q)tors = 3 and ∆ = −23133) and 26b1: y2 + xy + y = x3 − x2 − 3x + 3 (for
which #E(Q)tors = 7 and ∆ = −2713), we have (w2, w13) = (1,−1) and (−1, 1),
respectively. For either 26a1 or 26b1, B = [1, 1] so k = 1. There are no other
newforms of level 26, and the Hecke eigenvalues for 26a1 and 26b1 are congruent
mod 2 but not mod 4. It follows that Tm ≃ Z2[[X]]/(X(X − 2)), where in

∏
g Og,

X is (0, 2). This is a local complete intersection. Also #W ′ = 2. Both Proposition
9.6 and Proposition 2.1 give 2 | m. In fact the modular degrees are both 2. The
conductor 38 examples are similar (with modular degrees 6 and 2).

The optimal elliptic curves with N ≤ 1000 satisfying conditions (1)–(5), and of
rank R = 1, are 214a1, 214b1, 262a1, 302a1, 302c1, 362a1, 362b1, 430b1, 430c1,
430d1, 542b1, 618c1, 618e1, 618f1, 622a1, 670a1, 670c1, 670d1, 706b1, 794c1, 814a1,
814b1, 886e1, 890d1, 890f1, 890g1, 974e1. We consider a few of these in more detail.

The elliptic curve 214b1: A : y2 + xy + y = x3 + x has R = 1, A(Q)tors = {O},
N = 214 = 2 · 107, and minimal discriminant ∆ = −2 · 107. Since ∆ < 0,
A(R) is connected, and #ΦA,2 = #ΦA,107 = 1, the exponents in ∆. We have
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w2 = w107 = 1, so #W ′ = 22, and Proposition 2.1 gives 22 | m, the modular
degree. In fact, m = 22 · 3.

The elliptic curve 214a1, y2 + xy = x3 − 12x + 16, has the same residual mod
2 Galois representation as 214b1, and has w2 = w107 = −1, contributing a row
[1, 1] to the matrix B. There are also two 2-dimensional modular abelian varieties
of conductor 214 with the same residual mod 2 representation, which would have
contributed rows [0, 1] and [1, 0], but they don’t count, since 2 is ramified in the

coefficient field Q(
√
3). Hence k = 1, and Proposition 9.6 predicts only 2 | m. The

example 262b1 is similar. Since R− d = 0, Corollary 9.5 does not improve on this.
The elliptic curve 430b1 has (w2, w5, w43) = (1,−1,−1), so #W ′ = 22, and

Proposition 2.1 gives 22 | m. Its Hecke eigenvalues are congruent mod 2 to those
of 430c1 and 430d1, which have (w2, w5, w43) = (−1, 1,−1) and (−1,−1, 1) respec-
tively, contributing rows [1, 1, 0] and [1, 0, 1] to the matrix B. In fact this is the
whole of B, so k = 2. (There are two 2-dimensional modular abelian varieties
of conductor 430 with the same residual mod 2 representation, but 2 is ramified
in their coefficient fields.) Proposition 9.6 also predicts that 22 | m, and in fact
m = 23 · 5. (The curves 430c1 and 430d1 also have 23 | m, and could just as well
have been used as the example.) Again, R = 1 and Corollary 9.5 does not predict
anything stronger.

10.2. An elliptic curve of rank 2. In all the examples so far, r = 0 or 1, so
Corollary 9.5 adds nothing to Proposition 9.6. The same is true of the examples in
the next subsection with d > 1. So it seems worthwhile to produce an example of
an elliptic curve with r = 2 satisfying the conditions (1)–(5). Such an elliptic curve
is 2038a1, y2 + xy = x3− 10x+36, for which ∆ = −29 · 1019. Using Stein’s tables,
the other newforms of this conductor have coefficient fields of degrees, 2, 14, 20, 22
and 25. Factoring the minimal polynomials of generating elements modulo a high
power of 2 shows that in each field, 2 has no unramified prime factors of degree 1,
and consequently k = 0, and Corollary 9.5 suggests 2r−1 = 2 | m. On the other
hand, (w2, w1089) = (−1, 1), so #W ′ = 2, and Corollary 12.3 below suggests 22 | m.
In fact, m = 720 = 24 · 32 · 5.

10.3. Higher dimensional modular abelian varieties. There is no shortage
of modular abelian varieties of dimension d ≥ 2 satisfying conditions (1)–(5).
Listed by (N, d), those with N ≤ 400 are (74, 2), (74, 2),(86, 2), (86, 2), (122, 2),
(134, 3), (134, 3), (206, 2), (206, 2), (218, 2), (266, 2), (266, 2), (266, 2), (278, 3), (290, 2),
(290, 2), (314, 6), (326, 5), (334, 2), (334, 2), (334, 2), (358, 2), (358, 2), (358, 2), (374, 3),
(374, 3), (382, 3), (382, 3), (386, 2), (386, 2). These were found using the computer
packages SAGE and Magma. Further along, the example (554, 8) is noteworthy.

For the two examples with N = 74 and d = 2, we have (w2, w37) = (1,−1)
and (−1, 1). The coefficient fields are Q(

√
5) and Q(

√
13), in both of which 2

is inert, and the Hecke eigenvalues become equal in F4. We have B = [1, 1] so
k = 1. It is easy to see that Tm is a local complete intersection, because the Hecke
eigenvalues are congruent mod 2 but not mod 4, and there are no other newforms of
conductor N , so Tm ≃W (F4)[[X]]/(X(X−2)), where W (F4) is the ring of integers
in the unramified extension of Q2 of degree 2. Also #W ′ = 2. Corollary 9.5 (or
Proposition 9.6) and Proposition 2.1 both give 22 | m. The modular degrees are in
fact 12 = 22 · 3 and 20 = 22 · 5. The examples of conductor 86 are similar (except
the modular degrees are 4 and 8).
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There is a 2-dimensional abelian variety with N = 334 = 2 ·167 and (w2, w167) =
(1, 1). Notations differ, but let’s call it 334B. There is another 2-dimensional abelian
variety (let’s say 334D) with N = 334 = 2 · 167, but (w2, w167) = (−1,−1). They
are the modular abelian varieties with smallest conductor such that d ≥ 2 and
ϵ = −1. Both have coefficient field Q(

√
5), in which 2 is inert. Their Hecke

eigenvalues are congruent in F4, and in fact for either we have B = [1, 1] so k = 1.
Clearly N is even and square-free. Using SAGE we checked that A[2](Q) = {O}
and A(R) is connected, and that #ΦA,p is odd for each prime p | N . (For 334B
we have #ΦA,2 = 5 and #ΦA,167 = 1, while for 334D we have #ΦA,2 = 99 and

#ΦA,167 = 1.) Finally, using Stein’s table, Of is the full ring of integers in Q(
√
5),

so all the conditions (1)–(5) of the introduction are satisfied. Hence Proposition
9.6 predicts that 22 | m. Using Stein’s tables or Magma, one finds that for 334B
m = 24 · 5, while for 334D m = 24 · 32 · 11. The sign ϵ = −1, and using Magma
(“leading coefficient” command for the L-series of a modular abelian variety) one
checks that the order of vanishing of L(A, s) at s = 1 is precisely d. It then
follows from the theorem of Gross-Zagier [GZ] that r ≥ 1. (In fact, as noted in the
penultimate paragraph of [G], Kolyvagin’s method then shows that r = 1.) So as
in §10.1 (and also in the examples below), Corollary 9.5 does not predict anything
stronger than Proposition 9.6.

There are three 3-dimensional modular abelian varieties with N = 422 = 2 · 211,
and (w2, w211) = (1, 1), (−1,−1) and (1,−1). Call them 422C, 422E and 422D
respectively. For the first two of these ϵ = −1, and Magma gives ords=1L(A, s) = d,
so again r = 1. Taking discriminants of the polynomials in Stein’s tables, we find
that for all three 2 - disc(Of ). In fact 422C and 422E satisfy all the conditions (1)–
(5). In each case 2 is inert in Kf , and the three sequences of Hecke eigenvalues all
become the same in F8. This is easy to check from Stein’s table, since the minimal
polynomials for a3 given there are all congruent to x3 + x2 + 1 mod 2, so one just
reads each sequence (of polynomials of degree ≤ 2 in x) modulo 2, and they are
all the same sequence. There is also a newform for Γ0(422) with coefficient field
of degree 6, whose Hecke eigenvalues become the same in F8, modulo a divisor of
2 of degree 3. For this newform, (w2, w211) = (−1, 1). Hence, relative to 422C,

B =

1 1
0 1
1 0

 and k = 2. Since Fk = 6, Proposition 9.6 shows that if Tm is a

local complete intersection (which we actually confirm in the next subsection) then
26 | m (for 422C and 422E). In fact, for 422C, 422D and 422E we havem = 26 ·3·72,
m = 26 · 23 · 29 and m = 26 · 223, respectively. For 422E, Proposition 2.1 only gives
23 | m, while for 422C it gives 26 | m.

There are four modular abelian varieties with N = 478 = 2 · 239, of dimensions
4, 4, 5, 6. For the two 4-dimensional varieties, (w2, w239) = (1, 1) and (−1,−1), so
ϵ = −1, and as above one finds that r = 1. In both cases the conditions (1)–(5)
of the introduction are satisfied. For the 5 and 6-dimensional varieties we have
(w2, w239) = (−1, 1) and (1,−1), respectively. In all four cases OK has a prime of
norm 24, and in F16 all four sequences of Hecke eigenvalues appear to become the
same. Accepting this, k = 2, and Fk = 8 , so Proposition 9.6 implies that if Tm is
a local complete intersection then 28 | m (for the 4-dimensional varieties), and in
fact their modular degrees are 28 · 13 and 28 · 11 · 829.
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11. Examination of Hypothesis 9.2

11.1. Local complete intersections. The examples of conductors 26, 38, 74 and
86 were too easy. We take two more challenging examples from §§10.1 and 10.3,
and show that in each, Tm is a local complete intersection, thus lending weight to
the idea that it might always, or at least often, be so.

N = 214,d = 1.
The Hecke ring Tm is isomorphic to the subring of Z2

2 × (Z2(
√
3))2 generated

by vp := (ap(g1), ap(g2), ap(g3), ap(g4)), where p runs over the prime numbers, and
g1, g2, g3 and g4 are the normalised newforms associated to the elliptic curves 214b1,
214a1, and two 2-dimensional abelian varieties with coefficient field Q(

√
3), respec-

tively. As a Z2-module it is generated by the vectors vn := (an(g1), an(g2), an(g3), an(g4))

for 1 ≤ n ≤ 54 = N
6

∏
p|N

(
1 + 1

p

)
, by Theorem 5.1 of [LS], part of Agashe and

Stein’s appendix. Each vn may be viewed as an element of Z6
2 by expressing an(g3)

as a Z2-linear combination of 1 and α :=
√
3− 1, and an(g4) as a Z2-linear combi-

nation of 1 and β :=
√
3+1. Using Stein’s tables [Ste] to get v1, . . . , v54, and using

the computer package PARI to compute Hermite normal form, one finds that Tm

is the Z2-submodule of Z2
2 × (Z2(

√
3))2 generated by the rows of the matrix

4 0 0 0
2 2 0 0
0 0 2α 0
2 0 2 0
0 0 α β
1 1 1 1

 .

The top row shows that, with respect to projection to the first entry, η = (4).
Considering ways to take linear combinations of the rows to get a 0 in the first
entry, one finds that PT is the Z2 submodule spanned by the rows of

0 0 α β
0 0 2α 0
0 0 2 2
0 2 0 2
0 2 −2 0
0 4 0 0

 .

Then multiplying pairs of these elements together one finds that P2
T is spanned by

the rows of 

0 4 0 0
0 0 4 0
0 0 0 4
0 0 2α 0
0 0 0 2β
0 0 4− 4α 0
0 0 2− 2α 2 + 2β


.

By deleting the 0 in the first position, we may view PT and P2
T as submodules

of Z5
2, and using Hermite normal form we find that they are of index 25 and 27,

respectively. Hence #(PT/P2
T) = 4. Since #(PT/P2

T) = #(Z2/η), Tm is a local
complete intersection.

N = 422,d = 3.
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The Hecke ring Tm is isomorphic to the subring of W (F8)
4 generated by vp :=

(ap(g1), ap(g2), ap(g3), ap(g4)), where p runs over the prime numbers, and g1, g2, g3
and g4 are the normalised newforms associated to the 3-dimensional abelian vari-
eties 422E, 422C, 422D, and a certain 6-dimensional abelian variety, respectively.
HereW (F8) is the ring of integers in the unramified extension of Q2 of degree 3, and
each coefficient ring is embedded in W (F8) using a divisor of (2) of degree 3. As a
W (F8)-module, Tm is generated by the vectors vn := (an(g1), an(g2), an(g3), an(g4))

for 1 ≤ n ≤ 106 = N
6

∏
p|N

(
1 + 1

p

)
, again by Agashe and Stein’s appendix to [LS].

We have W (F8) = Z2(α) with α
3 +α2 +1 = 0. The coefficient fields of g1, g2, g3

and g4 are obtained from Q by adjoining roots of polynomials x3 + 5x2 + 6x +
1, x3 + x2 − 8x− 3, x3 + x2 − 6x− 5 and x6 − 4x5 − 4x4 + 28x3 − 15x2 − 33x+ 28
respectively. There are roots of these polynomials inW (F8) congruent modulo 25 to
20+31α+30α2, 28+21α, 14+9α+30α2 and 14+11α+8α2 respectively. Plugging
in these expressions for x in Stein’s tables, we get vectors v′n, approximating the
vn modulo 25, which (using all n ≥ 1) generate a W (F8)-submodule M2 of M :=
W (F8)

4 such that M2 + 25M = M1 + 25M , where M1 := Tm. By Lemma 2.1 of
[LS], if 24M ⊆M2 then M1 =M2.

Let

u1 := v′1 + v′2 = (1, 1, 1, 1) + (1,−1,−1, 1) = (2, 0, 0, 2),

u2 := v′211 − v′2 = (1,−1, 1,−1)− (1,−1,−1, 1) = (0, 0, 2,−2) and

u3 := v′1 − v′211 = (1, 1, 1, 1)− (1,−1, 1,−1) = (0, 2, 0, 2).

Also let

u4 := v′6 − v′7 = (30α2 + 31α+ 20, 11α+ 4, 2α2 + 23α+ 18, 8α2 + 11α+ 14)

−(12α2+31α+14, 11α+2, 2α2+23α+18, 30α2+7α+6) = (18α2+6, 2, 0,−22α2+4α+8).

Then u4 − u3 = (18α2 + 6, 0, 0,−22α2 + 4α+ 6), so

u4 − u3 − (9α2 + 3)u1 = (0, 0, 0,−40α2 + 4α) and

u4 − u3 − (−11α2 + 2α+ 3)u1 = (40α2 − 4α, 0, 0, 0),

so M2 contains (0, 0, 0, 4) and (4, 0, 0, 0). It also contains u1 + u2 = (2, 0, 2, 0) and
u1−u3 = (2,−2, 0, 0). We now see easily thatM2 contains (4, 0, 0, 0), (0, 4, 0, 0), (0, 0, 4, 0)
and (0, 0, 0, 4), so that in fact 22M ⊆M2, and indeed M1 =M2, i.e. Tm =M2.

The element (4, 0, 0, 0) of Tm shows that if η is defined with respect to projection
to the first coordinate then η | (4). Since (2) is inert in the coefficient ring for g1, and
in particular is the unique divisor of (2), η is the 2-part of what in [ARS](Definition
4.10) is called the congruence ideal (with A the abelian variety 422C). Hence the
2-part of their “congruence exponent” is 2s, where η = (2s). Now we already know
that the 2-part of the modular degree is 26, and using again the uniqueness of the
divisor of (2), the 2-part of ker(π ◦ π∨) must have structure W (F8)/(2

2), so that
the 2-part of the “modular exponent” in [ARS] is 22. By their Theorem 3.7, that
the modular exponent divides the congruence exponent, we see that also (4) | η, so
in fact η = (4).

Since −u1u2 = (0, 0, 0, 4), u22 + u2u3 = (0, 0, 4, 0) and u23 + u2u3 = (0, 4, 0, 0)
all belong to P2

T, while necessarily #(W (F8)/η) | #(PT/P2
T), the Fitting ideal

of PT/P2
T must be either (22) or (23). If it was the latter then PT would contain

(0, 2, 0, 0),(0, 0, 2, 0) and (0, 0, 0, 2), which subtracted from u1 shows that (2, 0, 0, 0) ∈
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Tm, contrary to η = (4). Hence #(W (F8)/η) = #(PT/P2
T) = (23)2, so Tm is a local

complete intersection.

11.2. Modularity of lifts. Having examined the hypothesis that Tm is a local
complete intersection, we now look into what it would take for the isomorphism in
Hypothesis 9.2 to fail.

If O is the ring of integers in a finite extension of Q2 containing Kλ, and if
θ : RD → O is a local Oλ-algebra homomorphism, then θ ◦ ρunivD : Gal(Q/Q) →
GL2(O) is ordinary when restricted to Gal(Q2/Q2), since it satisfies condition (2)
of §8 at p = 2. By §4 of [P], since θ ◦ ρunivD |G2 is ordinary, it is semi-stable. It is
then a direct consequence of Theorem 4.1 of [KW] that, if the image of ρ in GL2(F)
is non-solvable, then θ ◦ ρunivD is modular. In particular, any such θ : RD → O
must factor through Tm, and if RD ̸≃ Tm then this is not due to any failure of lifts
of ρ to GL2(O) to be modular. When d = 1, the image of ρ is always solvable,
since GL2(F2) is solvable. In general, given the absolute irreducibility implied by
Proposition 4.2, in our examples the only way for the image of ρ to be solvable is for
its image in PGL2(Fλ) to be dihedral, by Lemma 6.1 of [KW]. This is equivalent to
ρ being isomorphic, over F2, to the representation induced from some character of
a subgroup of index 2. This would imply that there is a quadratic field F , ramified
at most at primes dividing N , such that ap(f) = 0 in Fλ whenever p is inert in
F . It is easy to check using Stein’s tables that this is not the case in the examples
in this section with d > 1, so the image of ρ is indeed non-solvable. In fact, if we
assume that RD is finitely generated as an Oλ-module then it is easy to show that,
given the above, any non-zero element of the kernel of θ must be nilpotent. (Note
that the nilradical is the intersection of all prime ideals.)

12. A different approach

We continue to impose the conditions (1)–(5) from the introduction. Corollary
9.5 shows that, if each ki ≥ 1, then Hypothesis 9.2 implies that 2R | m, in accord
with the analogue of Watkins’s conjecture. It seems difficult to prove that each
ki ≥ 1, so we outline a different approach.

Recall from §2 the subgroup W ′ of Atkin-Lehner involutions fixing f . Thanks
to the condition (2), W ′′ = W ′, and by Proposition 2.1, (#W ′)d | m. The proof
shows that m = m′(#W ′)d, where m′ is defined as follows. Let X ′ = X/W ′, and
J ′ the Jacobian of X ′. The maps π : J0(N) → A and π∨ : A∨ → J0(N) factor
through π′ : J ′ → A and π′∨ : A∨ → J ′. We define m′ to be the square root of the
degree of the isogeny π′ ◦ π′∨ : A∨ → A.

As already hinted, we may define a deformation problem D′ in the same way as D
except that for p | N we fix the character χ. Let RD′ be the universal deformation
ring (a certain quotient of RD), and let T′′ be the quotient of Tm obtained by
viewing it as a subring of

∏
g Og then projecting to the product over just those

g such that wp(g) = wp(f) for all p | N . There is an Oλ-algebra homomorphism
θ : RD′ → T′′.

Hypothesis 12.1. θ′ is an isomorphism and RD′ ≃ T′′ is a local complete inter-
section.

Theorem 12.2. Assume the conditions (1)-(5) from the introduction. Let r =
dimK(A(Q) ⊗ Q). Then, assuming Hypothesis 12.1, 22F (r−1) divides the order of
ei(ker(π

′ ◦ π′∨)).
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Corollary 12.3. Assume the conditions (1)-(5) from the introduction, and also
Hypothesis 12.1. Then the modular degree of A is divisible by 2R−d(#W ′)d, where
R = rank(A(Q)). In particular (since the condition (1) implies that N is divisible
by at least two primes, so #W ′ ≥ 2), 2R divides the modular degree, in accord with
the analogue of Watkins’s conjecture.

Note that 2R−d(#W ′)d = 2d(r−1+s−1) or 2d(r−1+s), and compare with the com-
ment following Corollary 9.5. If r = 0 then r − 1 should be replaced by 0.

The steps in the proof of Theorem 12.2 are described below. The elements of
W ′ commute with the Tp (for p - N) and the Wp (for p | N), but not with the

Up, so we define T̃′ to be the ring of endomorphisms of J ′ generated by the Tp
(for p - N) and Wp (for p | N). Let T̃ be the ring of endomorphisms of J0(N)
generated by Tp (for p - N) and Wp (for p | N). Fixing i and λ = λi, let m̃

′ and m̃

be the kernels of the homomorphisms from T̃′ and T̃ (respectively) to Fλ given by

Tp 7→ ap(f) and Wp 7→ wp(f). Recall that Tm can be described as the subring of∏
g Og generated by the (ap(g)), where g runs over certain G2-orbits of newforms

for Γ0(N). Likewise T̃m̃ may be identified with the subring of
∏

g Og generated by

the (ap(g)) (for p - N) and (wp(g)) (for p | N). But each wp(g) = −ap(g), so these

are the same subrings, and we have a natural isomorphism Tm ≃ T̃m̃, taking m to
m̃. Let θ : X → X ′ be the quotient morphism.

Lemma 12.4. θ∗ : J ′[m̃′]→ J0(N)[m̃] is injective.

We shall give a full proof of this after describing how it is used.

Lemma 12.5. There is an equality of Tm-modules

T2(J0(N))m = T2(J0(N))m̃,

inside T2(J0(N), where the right-hand side is a Tm-module via the isomorphism

Tm ≃ T̃m̃.

We sketch the proof. The actions of all the Tp, Up and Wp on H1(X0(N),Q)
commute with the action of complex conjugation, as remarked in §2.4 of [Cr2],

which uses the earlier §2.1.3. Hence each H1(X0(N),Q)± is a TQ-module and a T̃Q-

module. The space S2(Γ0(N)) is dual as a TC-module (respectively as a T̃C-module)
to each H1(X0(N),Q)± ⊗C, but also to TC (via (T, f) 7→ a1(Tf)) (respectively to

T̃C, by Theorem 5 of [AL]). It follows that each H1(X0(N),Q)± is free of rank one

as a TQ-module and as a T̃Q-module (c.f. Lemma 1.37 of [DDT] for the former).
Since T2(J0(N)) ⊗Z2 Q2 ≃ H1(X0(N),Q2), we get that T2(J0(N)) ⊗Z2 Q2 is free

of rank two as a TQ2 -module and as a T̃Q2 -module. Both T2(J0(N))m ⊗ Q2 and
T2(J0(N))m̃⊗Q2 may be obtained from T2(J0(N))⊗Z2 Q2 by applying appropriate

elements in the subalgebra (of both TQ2 and T̃Q2) generated by the Tp for p - N ,
to isolate the part corresponding to newforms “belonging to” m (equivalently to
m̃, i.e. the g above). Hence T2(J0(N))m ⊗ Q2 = T2(J0(N))m̃ ⊗ Q2, and we obtain
T2(J0(N))m = T2(J0(N))m̃ by intersecting with T2(J0(N)), since both are direct
summands of T2(J0(N) as Z2-modules.

Lemma 12.6. (1) dimFλ
J ′[m̃′] = 2.

(2) T2(J
′)m̃′ is free of rank 2 over T̃′

m̃′ .

Lemma 12.5 implies that J0(N)[m̃] ≃ J0(N)[m], which has Fλ-dimension 2 by
Proposition 2.4 of [Bz]. Then by Lemma 12.4, dimFλ

J ′[m̃′] ≤ 2, but it must be equal
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to 2 since it supports the irreducible 2-dimensional representation ρ of Gal(Q/Q).
The second part of Lemma 12.6 follows from the first.

Deduction of Theorem 12.2.
To get T2(J

′) ⊗ Q2 from T2(J0(N)) ⊗ Q2, one takes W ′-invariants. (This does

not apply integrally, since W ′ is a 2-group.) It follows that T̃′
m̃′ is the quotient

of T̃m̃ ≃ Tm obtained by restricting the product of Og to g fixed by W ′. This
includes all g such that wp(g) = wp(f) for all primes p | N , and ifW ′ ̸=W possibly
some extra g such that wp(g) = +1 for all primes p | N . Thus we see that the T′′

appearing in Hypothesis 12.1 is a quotient of T̃′
m̃′ . If we define congruence ideals

η′ and η′′ in Oλ, for T̃′
m̃′ and T′′ respectively, then η′ ⊆ η′′. Thus it follows from

Hypothesis 12.1 and the first half of the proof of Proposition 8.2 that η′ = (2S) for
some S ≥ r− 1. Now one can prove Theorem 12.2 in the same manner as Theorem
9.4.

Proof of Lemma 12.4.
Consider θ∗ : J ′ → J0(N). We define a map F : ker θ∗ → (W ′)∧ (the character

group of W ′) as follows. Given a divisor class [D′] ∈ ker θ∗, θ∗(D′) = div(g) for
some function g on X0(N). If w ∈ W ′ then wg is a multiple of g, since div(g),
as a pullback from X ′, is invariant under W ′. Thus we may define F ([D′])(w) =
wg/g = ±1. If [D′] ∈ kerF then wg = g ∀w ∈W ′ so g is the pullback of a function
on X ′, whose divisor is D′, showing that [D′] = [0]. Hence F is injective.

Now suppose that [D′] ∈ J ′[m̃′] is a non-zero element of ker θ∗, say θ∗(D′) =
div(g). Since ρ is irreducible it has non-zero character, so we may choose a prime
p - N such that tr(ρ(Frob−1

p )) ̸= 0, so ap ̸≡ 0 (mod λ). Hence [TpD
′] ̸= [0] in J ′,

since Tp acts as multiplication by ap on the Fλ-vector space J ′[m̃′], but [TpD
′] is

also in ker θ∗, in fact θ∗(TpD
′) = div(Tpg). (The Hecke correspondence acts on

functions, as on divisors, by pullback and push-forward under degeneracy maps.)
If w ∈ W ′ then w(Tpg) = Tp(wg) = Tp(±g) = (±1)p+1Tpg = Tpg, since Tp has
degree (p+ 1), which is even. This shows that F ([TpD

′]) is trivial, contrary to the
injectivity of F . Hence θ∗ must be injective on J ′[m̃′].
�
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[Ra1] M. Raynaud, Spécialisation du foncteur de Picard, Publ. Math. IHES 38 (1970), 27–76.
[Ra2] M. Raynaud, Variétés abéliennes et géométrie rigide. In Actes du Congrès International

des Mathématiciens (Nice, 1970), Tome 1, 473–477. Gauthier-Villars, Paris, 1971.

[Ri1] K. Ribet, On modular representations of Gal(Q/Q) arising from modular forms, Invent.
Math. 100 (1990), 431–476.

[Ri2] K. Ribet, Galois action on division points of abelian varieties with real multiplications,

Amer. J. Math., 98 (1976), 751–804.
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