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We consider the genus of 20 classes of unimodular Hermitian lattices of
rank 12 over the Eisenstein integers. This set is the domain for a certain
space of algebraic modular forms. We find a basis of Hecke eigenforms, and
guess global Arthur parameters for the associated automorphic representa-
tions, which recover the computed Hecke eigenvalues. Congruences between
Hecke eigenspaces, combined with the assumed parameters, recover known
congruences for classical modular forms, and support new instances of con-
jectured Eisenstein congruences for U(2, 2) automorphic forms.

1 Introduction

Nebe and Venkov [32] looked at formal linear combinations of the 24 Niemeier lattices,
which represent classes in the genus of even, unimodular, Euclidean lattices of rank
24. They found a set of 24 eigenvectors for the action of an adjacency operator for
Kneser 2-neighbours, with distinct integer eigenvalues. What they did was equivalent
to computing a set of Hecke eigenforms in a space of scalar-valued modular forms for
a definite orthogonal group O24. They made, and proved most of, a conjecture on the
degrees in which the Siegel theta series of these eigenvectors are first non-vanishing.

∗The author is supported by the DFG collaborative research center TRR 195
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Chenevier and Lannes [7] reconsidered the results of Nebe and Venkov, in the light
of work of Arthur [1], and found (with proof) the endoscopic type of the automorphic
representation of O24(AQ) generated by each eigenvector. Each of these automorphic
representations is a “lift” built out of automorphic representations of smaller rank groups,
related to elliptic modular forms, and certain vector-valued Siegel modular forms of genus
2. They looked at various easily-proved congruences of Hecke eigenvalues between pairs
of eigenvectors. Writing the eigenvalues in terms of the endoscopic decompositions, they
obtained, after much cancellation from both sides, not only well-known congruences
such as Ramanujan’s τ(p) ≡ 1 + p11 (mod 691), but also the first proved instance of a
conjecture of Harder on congruences between Hecke eigenvalues of vector-valued Siegel
cusp forms of genus 2 and cusp forms of genus 1, modulo large primes occurring in critical
values of the L-functions of the latter [20]. The same method has subsequently been
employed by Mégarbané to prove several similar congruences, and also some involving
automorphic forms for SO7 [30].

In this paper we replace the Niemeier lattices by the genus of 20 classes of unimodular
Hermitian lattices of rank 12 over the Eisenstein integers. Thus the orthogonal group
O24 is replaced by a definite unitary group U12. These classes were enumerated, and
given explicit representatives, by Feit [15]. Using P-neighbours, in particular for P = (2)
(but also for P = (

√
−3)), we obtain a basis of 20 eigenvectors in a space of scalar-valued

algebraic modular forms. Using the computed Hecke eigenvalues, in tandem with the
clues provided by various congruences between pairs of eigenvectors, we make compelling
guesses for the endoscopic type of the automorphic representation of U12(AQ) generated
by each eigenvector.

Assuming these guesses, after cancellation we recover various congruences involving
elliptic modular forms of levels 1 or 3, including Ramanujan’s congruence, Eisenstein
congruences “of local origin” [14] and Ribet-Diamond level-raising congruences [10, 34].
But we also obtain instances of conjectured congruences involving automorphic repre-
sentations of U(2, 2), analogous to those of Harder, again with the moduli coming from
critical L-values [13]. Indeed, the motivation for this work was to prove such congru-
ences, following the work of Chenevier and Lannes on Harder’s conjecture. However,
because there is now a “bad” prime 3, it appears that it is not yet technically feasible
to do something similar here. One of the alternative methods they employed was to use
Arthur’s multiplicity formula to prove the occurrence of the endoscopic types listed in
their paper, and though work of Mok and of Kaletha et. al. provides such a formula in
our case [27, 31], it appears that not enough is currently known about representations
of ramified unitary groups to compute the terms in the formula. Similarly, there are
problems in trying to imitate their use of explicit formulas of analytic number theory,
to limit the possible components in the endoscopic decompositions. We are grateful to
Chenevier for his comments on this. We thank him also for pointing out that it may be
possible to prove, following what Ikeda did in the Niemeier lattices setting [25], some of
our guesses for global Arthur parameters (see §7 below). However, this would not cover
those cases involved in the congruences for U(2, 2) which we wish to prove.

In Section 2 we review some background on algebraic modular forms. In Section 3 we
describe how to use P-neighbours of Hermitian lattices to compute Hecke operators for
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definite unitary groups, giving the matrices for T(2) and T(
√
−3) on the 20-dimensional

space of primary interest in this paper. Section 4 starts with a table of Hecke eigen-
values and conjectured global Arthur parameters, and proceeds to show how to recover
the former from the latter. In Section 5 we consider congruences of Hecke eigenvalues
between pairs of eigenspaces, and how they may be explained using the global Arthur
parameters, then concentrating in Section 6 on congruences involving U(2, 2). Section 7
contains some guesses on Hermitian theta series and Hermitian Ikeda lifts.

2 Preliminaries and notation

We want to take the time to establish the notation for the rest of the article and provide
the necessary background on algebraic modular forms.

2.1 Algebraic modular forms

The primary reference for this subsection is Gross’s original article [19]. In addition we
also refer to the more algorithmically oriented article by Greenberg and Voight [17].

Let k be a totally real number field with ring of integers Ok and let

k∞ := R⊗Q k ∼= R[k:Q].

Looking at the finite places instead of the infinite ones we set k̂ the ring of finite adeles
of k:

k̂ =

(xp)p ∈
∏

p⊂Ok maximal

kp | xp ∈ Op f.a.a. p

 (1)

where kp denotes the completion of k at p and Op its ring of integers. Finally we denote

the (full) ring of adeles of k by Ak := k∞ × k̂.
Let G be a connected, reductive linear algebraic group over k such that G(k∞) is

compact. Let ρ : G → GLV be an irreducible finite-dimensional rational representation
of G defined over some extension of k and let K be an open compact subgroup of G(k̂).

Definition 2.1. The space of algebraic modular forms of weight V and level K is defined
as

M(V,K) =
{
f : G(k̂)/K → V | f(gγ)=gf(γ) for

γ∈G(k̂), g∈G(k)

}
∼=
{
f : G(k̂)→ V | f(gγκ)=gf(γ) for γ∈G(k̂),

g∈G(k),κ∈K

}
.

(2)

The structure of M(V,K) is summarized in the following proposition.

Proposition 2.2 ([19, Prop. (4.3),(4.5)]). Set ΣK := G(k)\G(k̂)/K. The following
holds:

1. The set ΣK is finite.
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2. If αi, 1 ≤ i ≤ h, is a system of representatives for ΣK and

Γi := G(k) ∩ αiKα−1
i , (3)

then

M(V,K)→
h⊕
i=1

V Γi , f 7→ (f(α1), ..., f(αh)) (4)

is an isomorphism of vector spaces, where V Γi denotes the Γi fixed points in V . In
particular M(V,K) is finite-dimensional.

Remark 2.3. For V = k the trivial representation and in the notation of the preceeding
proposition we have V Γi = V for all i so there is a natural isomorphism between M(V,K)
and the space of k-valued functions on ΣK .

The groups Γi are discrete subgroups of the compact group G(k∞) hence finite. More-
over, since G(k∞) is compact the space V carries a G(k)-invariant (totally positive) inner
product (taking values in the extension of k over which V is defined) which we denote
by 〈−,−〉. This inner product can be used to define a Petersson scalar product on the
space M(V,K). To that end let αi, 1 ≤ i ≤ h, again be a system of representatives for
ΣK and Γi = G(k) ∩ αiKα−1

i . For f, f ′ ∈M(V,K) we define

〈f, f ′〉M :=
h∑
i=1

1

|Γi|
〈f(αi), f

′(αi)〉. (5)

The so defined map 〈−,−〉M is obviously a totally positive definite symmetric bilinear
from on M(V,K) and does not depend on the choice of our representatives αi.

2.2 Hecke operators

We keep the notation from the previous subsection.
In addition to being a finite-dimensional k-vector space, the space of algebraic modular

forms also carries the structure of a module over the Hecke algebra of G with respect to
K.

Definition 2.4. The Hecke algebra HK = H(G,K) is the (k-)algebra of all locally
constant, compactly supported functions G(k̂) → k which are K-bi-invariant. The mul-
tiplication in HK is given by convolution with respect to the (unique) Haar measure dλK
giving the compact group K measure 1, i.e.

(F · F ′)(γ) =

∫
G(k̂)

F (x)F ′(x−1γ)dλK(x) =

∫
G(k̂)

F (γy−1)F ′(y)dλK(y) (6)

for F, F ′ ∈ HK and γ ∈ G(k̂).

The algebra HK has a canonical basis given by the characteristic functions of the
double cosets with respect to K, 1KγK , γ ∈ G(k̂).
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Remark 2.5. Let γ, γ′ ∈ G(k̂) then 1KγK and 1Kγ′K commute as elements of HK

whenever the support of γ and γ′ is disjoint. Moreover if K decomposes as a product
K =

∏
p primeKp and γ and γ′ are only supported at primes where Kp is a hyperspecial

maximal compact subgroup of G(kp) the corresponding elements of HK also commute.

The action of 1KγK ∈ HK on M(V,K) is given as follows: Decompose KγK =
tiγiK into disjoint K-left cosets, then 1KγK acts via the operator T (γ) = T (KγK) ∈
End(M(V,K)) defined by

(T (γ)f)(x) =
∑
i

f(xγi) for f ∈M(V,K), x ∈ G(k̂). (7)

We can extend T linearly to HK to obtain a homomorphism of k-algebras. Moreover,
the action of HK on M(V,K) is compatible with the inner product on M(V,K) in the
following sense.

Proposition 2.6 ([19, Prop. (6.9)]). The adjoint operator of T (γ) is given by T (γ−1)
(as an element of End(M(V,K))).

In particular we can conclude that M(V,K) is a semisimple HK-module.

2.3 Open compact subgroups arising from lattices

The open, compact subgroups of G(k̂) which will play a role in this article all arise
as stabilizers of lattices in the following way. Let G ↪→ GLW be a faithful k-rational
representation of G and L ⊂W a (full) Ok-lattice in W . The group GLW (k̂) (and thus
also G(k̂)) acts on the set of lattices in W and we obtain an open, compact subgroup
KL = StabG(k̂)(L) with

KL =
∏

p prime

KL,p, where KL,p = StabG(kp)(L⊗Op). (8)

The group KL,p is a hyperspecial maximal compact subgroup for all but finitely many
finite primes of Ok (cf. [8, Prop. 3.3]). Moreover, two open compact subgroups K and
K ′ arising as stabilizers in this way coincide at all but finitely many places. Note that
we do not need to fix the representation W for this since open compact subgroups fix
lattices in any representation.

In this situation decomposing G(k̂) into G(k)-KL-double cosets amounts to the same
as finding representatives for the isomorphism classes in the (G-)genus of L, i.e. decom-
posing the G(k̂)-orbit of L into G(k)-orbits. The class number |ΣKL

| is then also called
the class number of L and the complexity of ΣKL

can in some sense be measured by the
mass of L,

mass(L) := massG(L) :=
h∑
i=1

1

|Γi|
, (9)

where Γi = G(k) ∩ αiKLα
−1
i and G(k̂) =

⊔h
i=1 G(k)αiKL, which means that

{Li = αiL | 1 ≤ i ≤ h} (10)
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is a system of representatives for the genus of L.
The mass of L depends only on local information on G and L and can be computed

without writing down a system of representatives for the genus. Formulae to do so are
readily available in the literature (see for example [16] for the case of classical groups
and [8] for semisimple groups split at every prime).

3 Hecke operators for unitary groups

In this section we want to introduce the specific groups we are working with and explain
how to compute the relevant Hecke operators.

Let E be an imaginary quadratic number field and n ∈ N. By Un we will denote the
linear algebraic group arising as the stabilizer of the standard n-dimensional Hermitian
form over E. In other words Un is the linear algebraic group over Q whose group of
A-rational points is given by

Un(A) = {g ∈ GLn(A⊗Q E) | g†g = In} (11)

for any commutative Q-algebra A, where In is the n×n-unit matrix and g† denotes the
entrywise conjugate of gtr.

The group Un(R) is the usual unitary group of degree n over the complex numbers
and hence compact. In particular, we are in the general setup of section 2 with k = Q

and G = Un. Finally we set

Un := Un(Q) = {g ∈ GLn(E) | E†E = In}. (12)

3.1 Hermitian lattices

Let OE be the ring of integers of E. We denote by Vn the n-dimensional E-space En

endowed with the standard Hermitian form

〈v, w〉 = v†w, (13)

and by a Hermitian lattice we will always mean a full OE-lattice in Vn.

Definition 3.1. Let L ⊂ Vn be a Hermitian lattice. The dual of L is defined as

L# := {v ∈ Vn | 〈v, L〉 ⊂ OE}. (14)

Let I1, ..., In be the invariant factors of L# and L. Then

∂(L) :=
n∏
i=1

Ii (15)

is called the discriminant of L. We call L integral if L ⊂ L#. For a fractional ideal
I ⊂ E we call L I-modular if L# = I · L. If L is OE-modular (so L = L#) we call L
unimodular.
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Definition 3.2. Let L be a Hermitian lattice. The group

Aut(L) := StabUn(L) = {g ∈ Un | gL = L} (16)

is called the automorphism group of L.

Remark 3.3. The lattice L0 := OnE is unimodular and its (Un-)genus consists exactly
of all unimodular lattices. In particular, the group KL0,p ⊂ Un(Qp) is a hyperspecial
maximal compact subgroup, whenever p decomposes in E. Moreover, for E = Q(

√
−3)

the unimodular lattices in dimension at most 12 are fully classified, see [15].

3.2 Neighbours and Hecke operators

We now want to describe how one can compute certain Hecke operators.

Definition 3.4. Let L ⊂ Vn be an integral Hermitian lattice and let p ⊂ OE be a nonzero
prime ideal of OE such that p - ∂(L). A lattice L′ ∈ genus(L) is called a p-neighbour
of L if L/(L ∩ L′) ∼= OE/p and L′/(L ∩ L′) ∼= OE/p. We denote the (finite) set of
p-neighbours of L by N(L, p).

Remark 3.5. The stabilizer KL of L in Un(Q̂) acts transitively on the set of p-
neighbours of L for every p (cf. [17, Thm. 5.10]). Taking an element γ ∈ Un(Q̂)
such that γL ∈ N(L, p), it follows that N(L, p) = (KLγKL){L}. Clearly γ can be
chosen to have non-trivial support only at p. Moreover, all lattices in the set

M(L, p) := {N ∩ L | N ∈ N(L, p)} (17)

belong to the same genus. We call T (KLγKL) the neighbouring operator at p and denote
it by Tp.

An algorithm for computing all p-neighbours of a given lattice L is described in [28]. In
addition we can test Hermitian lattices for isometry by employing the Plesken-Souvignier
algorithm [33]. Knowing this we can compute the Hecke operator corresponding to the
the p-neighbours of a given lattice as follows.

Proposition 3.6. Let L be an integral Hermitian lattice with adelic stabilizer KL <
Un(Q̂) and p ⊂ OE a nonzero prime ideal such that p - ∂(L). Moreover let γ ∈ Un(Q̂)
be such that γL ∈ N(L, p), and choose a system αi, 1 ≤ i ≤ h for Un\Un(Q̂)/KL. Then
Li := αiL, 1 ≤ i ≤ h, forms a system of representatives, and with respect to the natural
basis of M(triv,KL) the operator T (KLγKL) has the matrix representation (ti,j)

h
i,j=1

with
ti,j = |{M ∈ N(Li, p) | M ∼= Lj}|. (18)

Proof. The natural basis for M(triv,KL) consists of the maps Fi : Un(Q̂) → Q with
Fi(αj) = δi,j . We decompose

KLγKL =

r⊔
j=1

γrKL (19)
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such that
N(L, p) = {γjL | 1 ≤ j ≤ r}. (20)

Then the (i, j)-entry of T (KLγKL) with respect to the given basis is the coefficient of
Fi in T (KLγKL)Fj which is

T (KLγKL)Fj(αi) =
r∑

a=1

Fj(αiγa)

= |{1 ≤ a ≤ r | αiγa ∈ UnαjKL}|
= |{1 ≤ a ≤ r | αiγaL ∼= αjL}|
= |{M ∈ N(L, p) | αiM ∼= Lj}|
= |{M ∈ N(Li, p) | M ∼= Lj}|.

(21)

This proves the assertion.

While this algorithm works perfectly well in the cases we are primarily interested in,
we also want to describe an alternative method, which often takes significantly less time.
This alternative method has the added benefit of computing a system of representatives
of a second genus of lattices along the way.

Proposition 3.7. Let L and p be as in Proposition 3.6, where we in addition assume
that p corresponds to a prime of Q that is either inert or ramified in E, and M ∈
{L ∩ N | N ∈ N(L, p)}. Choose representatives Li, 1 ≤ i ≤ h and Mj , 1 ≤ j ≤ h′,
for genus(L) and genus(M), respectively. Set Sp = (si,j) ∈ Zh×h

′
to be the matrix with

entries
si,j = |{X ⊂ Li | X ∼= Mj}|. (22)

In addition let d := |{L ∩N | N ∈ N(L, p)}|. Set S′p to be the matrix

S′p := diag(|Aut(M1)|, ..., |Aut(Mh′)|) · Str · diag(|Aut(L1)|−1, ..., |Aut(Lh)|−1). (23)

Then the operator T (KLγKL) from Proposition 3.6 (with respect to the natural basis)
can be computed as

Sp · S′p − d · Ih. (24)

Proof. The proof works analogously to that of Proposition 3.6. One only needs to see
that the (j, i)-entry of

diag(|Aut(M1)|, ..., |Aut(Mh′)|) · Str · diag(|Aut(L1)|−1, ..., |Aut(Lh)|−1) (25)

counts the lattices above Mj which are isomorphic to Li. This however is a simple
counting argument (cf. [2] and [37, La. (4.2)]).

Remark 3.8. If one wants to employ Proposition 3.7 in practice it is not necessary to
have a system of representatives of genus(M) already at hand. Instead such a system
can be found along the way by computing the relevant sublattices of the representatives
for genus(L).
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3.3 Computational results

In this subsection we present the results of our computations of Hecke operators for
certain genera of Hermitian lattices for E = Q(

√
−3).

We start by computing the neighbouring operator T2 acting on the space M(triv,KL)
where L is a so-called Eisenstein lattice in dimension 12. The genus in question consists
of all 〈

√
−3〉-modular lattices in V12 and was classified in [22]. The genus decomposes

into 5 isometry classes which we take in the order of [22, Thm. 2]. In particular, the
cardinalities of the automorphism groups are (in this order)

22568879259648000, 8463329722368, 206391214080, 101016305280, and 2690072985600.
(26)

Following Proposition 3.6 one computes the basis representation of T2 as
65520 3888000 1640250 0 0
1458 516285 3956283 1119744 0
15 96480 2467899 2998272 31104
0 13365 1467477 3935781 177147
0 0 405405 4717440 470925

 . (27)

Alternatively we employ Proposition 3.7. The second genus which we compute along
the way consists of lattices which are of index 4 (elementary divisors 2 · OE) in lat-
tices of the given genus. It decomposes into 25 isometry classes with corresponding
automorphism group cardinalities (in the order in which we found the representatives)

501530650214400, 4701849845760, 3715041853440, 11609505792, 27518828544,

705277476864, 9795520512, 181398528, 967458816, 15116544,

4478976, 95551488, 103195607040, 859963392, 23887872,

20155392, 839808, 186624, 13271040, 524880,

1530550080, 9447840, 233280, 1140480, and 246343680.

(28)
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After computation we find

S′2 =



3 0 0 0 0
3 0 0 0 0
3 0 0 0 0
1 2 0 0 0
1 0 2 0 0
0 3 0 0 0
0 3 0 0 0
0 3 0 0 0
0 3 0 0 0
0 1 0 2 0
0 1 2 0 0
0 2 1 0 0
0 0 3 0 0
0 0 3 0 0
0 0 3 0 0
0 0 3 0 0
0 0 3 0 0
0 0 1 2 0
0 0 1 0 2
0 0 2 1 0
0 0 0 3 0
0 0 0 3 0
0 0 0 3 0
0 0 0 2 1
0 0 0 0 3



, (29)

where we only write down S′2 for the sake of readability. In particular the number d
from Proposition 3.7 is 3 (as it is the sum of the entries of any of the rows of S′2) and
we obtain the same representation for T2 as before.

We now present the Hecke operators we are primarily interested in. To that end let
L ⊂ V12 be a unimodular Hermitian lattice of rank 12. The genus of L consists of 20
isometry classes which were classified in [15]. We consider them in the following order:
The first 11 are the indecomposable unimodular lattices in the same order as [15, Table
II], then the 12-dimensional standard lattice, then the 7 direct sums of lattices in [15,
Table I] with standard lattices of appropriate rank (again in the same order as in the
source table), and finally the direct sum of two copies of the lattice called U6 in [15].

Employing Proposition 3.7 we managed to compute the Hecke operators T2 and T√−3

acting on M(triv,KL) which are given by the following matrices:
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T
2
:

               3
3
8
9
1
6
9

0
4
9

1
8
0
8
8

1
8
0
8
8

5
8
8

6
6
1
9
2
0

2
7
8
5
6
5

4
1
1
6

2
1
5
6
0
0

9
1
8
7
5
0

0
0

0
7
0

1
3
0
2

4
4
1

4
5
5
7
0

4
1
4
5
4

0
0

7
2
8
1
0

1
1
8
0
9
8

1
3
5
8
1
2
7

1
3
5
8
1
2
7

1
0
8
2
5
6
5

1
0
8
2
5
6
5

0
4
4
9
0
6
4

0
0

0
0

0
1
3
3
6
5

0
0

5
9
0
4
9

0
0

4
7
3
0
8
8

2
0
4
8

1
2
9
0
3
1

5
7
5
4
8
8

5
7
5
4
8
8

1
1
0
8
8
0

1
0
1
3
7
6
0

2
1
1
3
1
8
8

4
7
3
0
8
8

0
4
6
2
0
0

1
0

9
9
0

0
1
2
0
1
2

0
6
7
5
8
4

0
9
2
4

2
2
1
7
0
7
2

2
9
9

7
3
0
6

2
6
2
9
9
0

1
5
4
2
9
7

3
7
3
2
3

1
6
0
2
3
1
5

1
0
0
3
0
0
2

7
2
0
7
2

0
1
5
0
1
5
0

0
0

0
7
1
5

4
2
9
0

0
4
5
9
0
3

3
6
0
3
6

0
2
2
1
7
0
7
2

2
9
9

7
3
0
6

1
5
4
2
9
7

2
6
2
9
9
0

3
7
3
2
3

1
6
0
2
3
1
5

1
0
0
3
0
0
2

7
2
0
7
2

0
1
5
0
1
5
0

0
0

0
7
1
5

4
2
9
0

0
4
5
9
0
3

3
6
0
3
6

0
8
7
0
9
1
2

2
8
8
0

1
7
0
1
0

4
5
1
0
0
8

4
5
1
0
0
8

1
7
4
3
0
3

2
0
9
9
5
2
0

1
1
9
7
5
0
4

1
6
1
2
8
0

0
8
5
0
5
0

0
6
3

1
3
5

0
8
5
0
5

1
8
9
0

0
7
2
5
7
6

1
2
6

3
0
6
3
7
4
4

9
4
8
6

6
0
5
0
7

6
0
5
0
7

6
5
6
1

1
1
0
4
7
5
0

5
2
3
9
0
8

1
9
6
5
6

1
2
0
9
6
0

5
4
4
3
2
0

0
0

0
1
5
3

1
9
4
4

7
5
6

3
8
6
3
7

4
6
8
7
2

0
2
9
1
0
7
2
0

0
2
2
8
7

8
5
5
0
4

8
5
5
0
4

8
4
4
8

1
1
8
2
7
2
0

7
2
0
0
6
0

3
4
3
0
4

1
0
2
4
0
0

3
7
3
8
0
0

0
2

6
0

0
2
5
8
0

9
0
0

4
9
1
5
2

3
5
3
2
8

1
1
6
5
3
3
7
2

3
2
4

1
9
6
8
3

2
3
6
1
9
6

2
3
6
1
9
6

4
3
7
4
0

1
7
0
5
8
6
0

1
3
1
8
7
6
1

1
9
6
7
1
3

9
7
2
0
0

0
0

0
0

8
1
0

0
6
0
7
5

3
9
3
6
6

3
9
3
6
6

1
0
8

3
4
6
4
2
0
8

0
0

0
0

0
4
1
9
9
0
4

1
5
7
4
6
4

3
8
8
8

3
3
7
4
3
7

1
1
2
1
9
3
1

0
0

0
0

0
1
4
5
8

5
2
4
8
8

3
4
9
9
2

0
3
4
5
6
0
0
0

0
1
8

4
6
0
8

4
6
0
8

2
1
6

4
4
2
3
6
8

1
3
4
5
6
8

0
2
6
2
6
5
6

1
1
9
9
7
6
3

0
0

9
0

1
2
9
6

1
0
8

4
1
4
7
2

4
6
0
8
0

0
0

0
3
5
4
2
9
4

0
0

0
0

0
0

0
0

2
7
1
2
6

4
4
9
0
6
4

2
1
6
5
1
3
0

0
2
5
9
8
1
5
6

0
0

0
0

0
0

0
0

0
1
8
3
7
0
8

0
8
2
6
6
8
6

0
0

0
5
6
7

5
9
9
3
1

1
5
3
0
9
0

7
2
5
7
6
0

1
3
7
7
8
1
0

3
0
6
1
8
0

0
1
9
5
9
5
5
2

4
8
6

0
0

2
1
8
7
0

0
0

1
9
4
4
0

0
1
2
2
4
7
2
0

0
0

5
1
0
3
0
0

1
3
5

7
5
6
0

8
1
0
4
5

2
0
7
3
6
0

8
3
1
0
6
0

3
4
0
2
0
0

1
8
6
6
2
4
0

4
8
3
8
4
0

0
1
4
1
7
1
7
6

4
8
6

0
1
1
8
0
9
8

1
1
8
0
9
8

0
6
6
9
2
2
2

0
4
0
8
2
4

0
0

0
3
4
0
2

1
9
6
8
3

1
2
3
1
1
1

5
5
1
1
2
4

1
8
3
7
0
8

1
0
6
2
8
8
2

1
2
8
5
9
5
6

0
1
7
1
4
1
7
6

0
1
6
3
8

4
6
0
8
0

4
6
0
8
0

7
5
6
0

5
5
2
9
6
0

3
2
5
0
8
0

0
0

4
5
3
6
0
0

1
4
2
0

5
1
3
0

3
5
8
4
0

2
7
5
2
2
9

7
7
1
1
2

1
0
3
6
8
0
0

1
0
1
6
0
6
4

0
1
6
7
9
6
1
6

0
0

0
0

4
8
6
0

6
2
2
0
8
0

3
2
8
0
5
0

5
7
6
0
0

3
4
5
6
0
0

1
0
9
3
5
0

0
2
7
0

6
0
7
5

3
4
5
6
0

2
2
3
0
7
4

1
2
9
7
5
3

1
1
1
9
7
4
4

9
3
3
1
2
0

1
8

2
5
7
7
9
6
0

6
3
9
6

2
1
1
8
6

2
1
1
8
6

0
4
7
2
2
3
0

2
6
6
1
1
2

5
5
4
4

1
8
4
8
0
0

6
2
3
7
0
0

0
0

4
9
5

2
9
7
0

4
4
5
5
0

1
6
6
3
2

7
2
1
2
1
5

6
3
4
7
8
8

0
2
4
6
6
9
3
6

0
0

1
7
4
9
6

1
7
4
9
6

2
9
1
6

6
0
2
6
4
0

2
0
1
2
0
4

5
8
3
2

1
2
9
6
0
0

7
2
9
0
0
0

0
2
7

1
3
5

3
7
8
0

4
5
9
2
7

1
4
5
8
0

6
6
7
7
6
4

6
8
8
4
3
7

0
0

0
9
6
4
4
6
7

0
0

8
5
7
3
0
4

0
9
6
4
4
6
7

2
7
0
9
5
0
4

0
0

0
1
1
3
4

0
0

0
4
7
6
2
8

0
0

4
9
2
6
6

               

(30)
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T
√
−
3
:

               1
6
3
8
9
8

0
0

6
9
3

6
9
3

1
4

3
1
0
1
0

1
2
3
4
8

9
8

9
8
0
0

4
4
1
0
0

0
0

0
0

7
0

0
1
9
6
0

1
7
6
4

0
0

1
3
2
2

5
9
0
4
9

5
9
0
4
9

5
9
0
4
9

0
0

0
8
5
9
3
2

0
0

1
0

0
6
6
0

0
0

0
0

1
3
8
6

0
1
0
2
4

3
8
0
8

5
7
3
4
4

5
7
3
4
4

2
9
5
6
8

5
6
3
2
0

5
9
1
3
6

0
0

0
0

0
0

0
8
8
0

0
1
0
2
4

0
0

8
4
9
4
2

1
3

7
2
8

6
2
9
2

1
9
6
0
4

1
7
1
6

7
7
9
3
5

6
6
0
6
6

6
0
0
6

0
0

0
0

0
0

2
8
6

0
2
8
6
0

0
0

8
4
9
4
2

1
3

7
2
8

1
9
6
0
4

6
2
9
2

1
7
1
6

7
7
9
3
5

6
6
0
6
6

6
0
0
6

0
0

0
0

0
0

2
8
6

0
2
8
6
0

0
0

2
0
7
3
6

0
4
5
3
6

2
0
7
3
6

2
0
7
3
6

5
2
8
8

5
3
7
6
0

1
1
1
1
3
2

2
6
8
8
0

0
0

0
0

4
0

0
0

3
3
6

0
2
2
4
0

2
8

1
4
3
5
3
2

0
2
7

2
9
4
3

2
9
4
3

1
6
8

5
7
4
2
2

3
0
6
1
8

1
4
5
6

6
7
2
0

1
7
0
1
0

0
0

1
1
2

0
8
4

1
9
4
4

1
5
6
8

0
1
2
9
0
2
4

0
6
4

5
6
3
2

5
6
3
2

7
8
4

6
9
1
2
0

3
7
2
8
0

1
0
2
4

0
1
4
4
0
0

0
0

0
0

1
6
0

0
1
0
2
4

2
3
0
4

0
3
9
3
6
6

6
2

0
1
9
6
8
3

1
9
6
8
3

7
2
9
0

1
2
6
3
6
0

3
9
3
6
6

9
7
9
8

1
8
0
0

0
0

2
0

1
2
0

0
0

0
2
9
1
6

2
1
5
7
4
6
4

0
0

0
0

0
2
3
3
2
8

0
7
2

1
1
6
9
6

6
9
9
8
4

0
0

0
1
6

0
0

0
3
8
8
8

0
1
6
5
8
8
8

0
0

0
0

0
1
3
8
2
4

5
1
8
4

0
1
6
3
8
4

6
1
2
8
0

0
0

0
0

0
4
8

2
3
0
4

1
5
3
6

0
0

6
1
4
4

0
0

0
0

0
0

0
0

0
2
6
4
0

8
8
7
0
4

0
1
6
8
9
6
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2
1
5
0
4

0
0

1
1
2

5
0
0
0

2
2
6
8
0

5
3
7
6
0

0
9
0
7
2
0

0
7
2
5
7
6

9
6

0
0

0
0

0
5
7
6
0

4
6
0
8
0

0
0

0
0

0
1
1
2
0

5
1
6
8

2
3
0
4
0

7
7
7
6
0

0
0

1
0
7
5
2
0

0
0

2
4

0
0

0
0

5
2
4
8
8

0
6
0
4
8

2
0
1
6
0

0
1

2
5
2

2
1
8
7

9
3
5
6

3
9
3
6
6

1
7
0
1
0

7
8
7
3
2

4
0
8
2
4

0
9
2
1
6
0

0
1
2
0

3
0
7
2

3
0
7
2

0
0

2
0
1
6
0

0
0

0
0

0
4
8
0

2
5
6
0

2
0
6
0
0

6
7
2
0

6
9
1
2
0

4
8
3
8
4

0
0

0
0

0
0

8
6
4

6
9
1
2
0

0
0

0
4
8
6
0
0

0
8
0

0
3
2
0
0

1
9
4
4
0

7
6
4
0

3
1
1
0
4

8
6
4
0
0

0
1
1
0
8
8
0

0
6

1
3
2
0

1
3
2
0

0
2
3
7
6
0

5
5
4
4

0
0

3
4
6
5
0

0
0

0
2
2
0

2
9
7
0

4
6
2

4
2
8
1
2

4
2
5
0
4

0
1
0
4
9
7
6

0
0

0
0

9
0

2
0
1
6
0

1
3
1
2
2

4
3
2

1
4
4
0
0

2
4
3
0
0

0
1

3
0

1
2
0

2
1
8
7

1
3
5
0

4
4
7
1
2

4
0
5
6
8

0
0

2
5
0
8
8

0
0

0
1
9
0
5
1
2

0
0

5
0
1
7
6

0
0

0
2
2
4

0
0

0
0

0
0

4
4
8

               

(31)
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4 Eigenvectors and automorphic representations

4.1 The eigenvectors

We consider still the genus of 20 classes of unimodular Hermitian lattices of rank 12.
Bearing in mind the remark following Proposition 2.6, we seek a basis {v1, v2 . . . , v20} of
M(triv,KL), simultaneous eigenvectors for all the T (γ). We scale the vi to have integral
values with no common factor, and write λi(T (γ)) for the eigenvalue of T (γ) acting on
vi. We order them as in the following table, which presents the eigenvalues for T(2) and
T(
√
−3). There is only one eigenvalue for T(2) whose eigenspace is not 1-dimensional. In

fact T(2) and T(
√
−3) have a common 2-dimensional eigenspace, though looking at the last

column of the table (to be explained later) we would expect it to be broken up by T(7).
The eigenvalues and eigenvectors were computed using the above 20-by-20 matrices, and
the computer package Maple.

i λi
(
T(2)

)
λi

(
T(
√
−3)

)
Global Arthur parameters (conjectural)

1 5593770 266448 [12]
2 1395945 89552 ∆11 ⊕ [10]
3 1401453 88328 ∆11(3)⊕ [10]
4 357525 30032 ∆10[2]⊕ [8]
5 348453 29528 ∆11 ⊕∆9(3)⊕ [8]
6 91845 9368 ∆10[2]⊕∆7(3)⊕ [6]
7 90873 10664 ∆11(3)⊕∆8[2]⊕ [6]
8 85365 11888 ∆11 ⊕∆8[2]⊕ [6]
9 23805 7568 ∆8[4]⊕ [4]
10 40005 1808 ∆10[2]⊕∆6[2]⊕ [4]
11 30933 1304 ∆11 ⊕∆9(3)⊕∆6[2]⊕ [4]

12 23319 + 162
√

193 4148 + 36
√

193 ∆
(2)
11,5 ⊕∆8[2]⊕ [4]

13 23319− 162
√

193 4148− 36
√

193 ”
14 46485 −4528 ∆11 ⊕∆6[4]⊕ [2]
15 51993 −5752 ∆11(3)⊕∆6[4]⊕ [2]
16 11925 −1072 ∆11 ⊕∆9,3 ⊕∆6[2]⊕ [2]
17 176085 −18928 ∆6[6]
18 −5355 728 ∆11 ⊕∆9,1 ⊕∆5(3)[3]

19 108693 −13312 (∆5(3)⊗ ψ6)⊕ ψ6[4]⊕ ψ6[6]

20 108693 −13312 (∆5(3)⊗ ψ6)⊕ ψ6[4]⊕ ψ6[6]

Each vi may be thought of as a complex-valued function on U12(Q)\U12(AQ), right-
invariant under K = K∞KL, where K∞ := U12(R). Under the right-translation ac-
tion of U12(AQ), it generates an infinite-dimensional automorphic representation πi of
U12(AQ).

For each local Weil group WR and WQp of Q there is associated to πi a Langlands
parameter, a homomorphism from that group to the local L-group GL12(C) oWR or
GL12(C) o WQp of U12. Restricting to the local Weil group WC or WEP

of E, and

13



projecting to GL12(C), we obtain Langlands parameters

c∞(π̃i) : WC → GL12(C), cEP
(π̃i) : WEP

→ GL12(C),

defined up to conjugation in GL12(C), which is here playing the role of the Langlands dual
of GL12,E . See [31] (following (2.2.3)) for this “standard base-change of L-parameters”.
Now WC = C×, and it is a consequence of the fact that vi is scalar-valued that (up to
conjugation)

c∞(π̃i) : z 7→ diag
(

(z/z)11/2, (z/z)9/2, . . . , (z/z)−11/2
)
.

At a prime P dividing p for which both U12 and πi are unramified (i.e. p 6= 3, given our
choice of E and KL), cEP

(π̃i) is determined by FrobP 7→ tP(π̃i) (the Satake parameter
at P). This determines λi(TP), by the formulas

λi(TP) =

{
(NP)11/2Tr(tP(π̃i)) + p12−1

p+1 for (p) = P inert;

(NP)11/2Tr(tP(π̃i)) for (p) = PP split.

In the split case, where U12(Qp) ' GL12(Qp), this is a direct consequence of a formula
of Tamagawa [38],[18, i = 1 in (3.14)]. In the inert case, where U12(Qp) ' U(6, 6)(Qp),
it may be justified assuming a coset decomposition like that for U(2, 2) in [29, (5.7)],
combined with [6, IV. (33),(35),(39)].

4.2 Global Arthur parameters

A complete description of those automorphic representations, of a quasi-split unitary
group G∗, occurring discretely in L2(G∗(Q)\G∗(AQ)), was given by Mok [31, Theo-
rem 2.5.2]. This was extended to general unitary groups (including U12) by Kaletha,
Minguez, Shin and White [27, Theorem* 1.7.1], conditional on what will be written up
in later papers of Kaletha, Minguez and Shin, and of Chaudouard and Laumon. (See the
discussion on [27, p.6].) Part of this description is that to such an automorphic repre-
sentation is attached a “global Arthur parameter”, a formal unordered sum of the form
⊕mk=1Πk[dk], where Πk is a cuspidal automorphic representation of GLni(AE), dk ≥ 1
and

∑m
k=1 nkdk = N = 12. Before explaining the guesses in the final column of the

table, we fix some notation.
Let f be a cuspidal Hecke eigenform of weight k for SL2(Z). There is an associated

cuspidal automorphic representation Πf of GL2(AQ), with base-change Π̃f of GL2(AE).
We have

c∞(Π̃f ) : z 7→ diag
(

(z/z)(k−1)/2, (z/z)(1−k)/2
)
,

and

tP(Π̃f ) =

{
diag(α, α−1) p split;

diag(α2, α−2) p inert,

where ap(f) = p(k−1)/2(α + α−1) and |α| = 1. In the table, Π̃f is denoted ∆k−1,

the subscript coming from the exponents in c∞(Π̃f ). For example when k = 12 and
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f = ∆ =
∑∞

n=1 τ(n)qn, we have ∆11. Similarly for a newform f ∈ Sk(Γ0(3)) we

denote Π̃f by ∆k−1(3), e.g. ∆11(3),∆9(3),∆7(3) and ∆5(3). Although S10(Γ0(3)) is 2-
dimensional, we reserve ∆9(3) for the base change associated to just one of the normalised
eigenforms, it being the only one that appears to actually occur in the global Arthur
parameters of any of our πi.

For a Hecke eigenform f ∈ Sk(Γ0(3), χ−3) (where χ−3 is the quadratic character
attached to E), with k odd, we have ∆k−1 , e.g ∆10 and ∆8. Note that each of
S11(Γ0(3), χ−3) and S9(Γ0(3), χ−3) is spanned by a conjugate pair of Hecke eigenforms,
sharing the same base-change. Note also that S7(Γ0(3), χ−3) is spanned by a Hecke

eigenform f of CM type. The base change Π̃f is, in this case, not cuspidal, but we still
use ∆6 as a shorthand for ψ6 ⊕ ψ6, where ψ6 is an everywhere-unramified, cuspidal,
automorphic representation of GL1(AE), given by ψ6(z) = z−6 for z ∈ C× (embedded
in A×E by putting 1 in all the other components) and ψ6(πP) = α6

P, where πP ∈ E×P is
a uniformiser at P and (αP) = P. Since the group of units in OE has order 6, this is
well-defined, independent of the choice of αP.

For d ≥ 1, [d] is an automorphic representation of GLd(AE), occurring discretely in
L2(GLd(E)\GLd(AE)), with

c∞([d]) : z 7→ Symd−1
(

diag
(

(z/z)1/2, (z/z)−1/2
))

and
cP([d]) : FrobP 7→ Symd−1

(
diag

(
(NP)1/2, (NP)−1/2

))
.

Given a cuspidal automorphic representation Π of GLn(AE), there is a discrete automor-
phic representation Π[d] of GLnd(AE), whose Langlands parameters are tensor products
of those of Π and of [d].

4.3 Recovering the Hecke eigenvalues

All the entries in the final column of the table must agree with the requirement

c∞(π̃i) : z 7→ diag
(

(z/z)11/2, (z/z)9/2, . . . , (z/z)−11/2
)
,

and indeed they do, as illustrated by the following examples.
For 1, c∞([12]) = Sym11

(
diag

(
(z/z)1/2, (z/z)−1/2

))
, which is precisely

diag
(

(z/z)11/2, (z/z)9/2, . . . , (z/z)−11/2
)
.

For 2, ∆11 contributes the exponents 11/2,−11/2, while [10] contributes the remaining
9/2, 7/2, . . . ,−7/2,−9/2.

For 7, ∆11(3) gives 11/2,−11/2, ∆8[2] gives 9/2, 7/2,−7/2,−9/2, and [6] the remain-
ing 5/2, 3/2, 1/2,−1/2,−3/2,−5/2. Note that ∆8 would have contributed 8/2,−8/2,
but with the [2] these got “smeared” to either side.
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From the conjectural global Arthur parameter of a πi we may compute a putative
λi(T(2)), using the formula

λi(TP) = (NP)11/2Tr(tP(π̃i)) +
p12 − 1

p+ 1

with P = (2), NP = 4, and check that it agrees with the real one. Here are some
examples.

1. We have t(2)([12]) = diag(411/2, . . . , 4−11/2), so would get

λ1(T(2)) = 1 + 4 + 42 + . . .+ 411 +
212 − 1

3
=

412 − 1

3
+

212 − 1

3
= 5593770,

which is correct.
2. We have t(2)(∆11 ⊕ [10]) = diag(α2, 49/2, 47/2, . . . , 4−7/2, 4−9/2, α−2), so would get

λ2(T(2)) = 411/2(α2 + α−2) + (4 + 42 + . . . 410) +
212 − 1

3

= ((211/2(α+ α−1))2 − 2.211) + 4

(
410 − 1

3

)
+

212 − 1

3

= (a2(∆)2 − 2.211) + 4

(
410 − 1

3

)
+

212 − 1

3

= ((−24)2 − 2.211) + 4

(
410 − 1

3

)
+

212 − 1

3
= 1395495,

also correct, using ∆ = q − 24q2 + 252q3 . . ..
7. Similarly for ∆11(3)⊕∆8[2]⊕ [6],

(782 − 2.211) + 4((6
√
−14)2 + 2.28)(1 + 4) + 43

(
46 − 1

3

)
+

212 − 1

3
= 90873,

using eigenforms f = q + 78q2 − 243q3 . . . ∈ S12(Γ0(3)) and g = q + 6
√
−14q2 + (45 −

18
√
−14)q3 . . . ∈ S9(Γ0(3), χ−3).

17. Since ψ6((2)) = ψ6((2)) = 26, for ∆6[6] we get

(2.26)

(
46 − 1

3

)
+

212 − 1

3
= 176085,

as required.
19. The Hecke eigenform q − 6q2 + 9q3 + . . . spans S6(Γ0(3)), so for (∆5(3) ⊗ ψ6) ⊕

ψ6[4]⊕ ψ6[6] we would get

λ19(T(2)) = ((−6)2 − 2.25)(26) + 4

(
44 − 1

3

)
(26) +

(
46 − 1

3

)
(26) +

212 − 1

3
= 108693,

which is correct.
Similar calculations of T(2) eigenvalues corroborate all the other guesses for global

Arthur parameters in the table, except for 12,13,16,18, which we deal with next.
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4.3.1 Algebraic modular forms for U4

With G = U4 and V = Va,b the representation of highest weight λ = a(e1−e4)+b(e2−e3),
where ei(diag(t1, t2, t3, t4)) = ti and a ≥ b ≥ 0, consider the space M(V,KL), where L
is the standard Hermitian lattice O4

E , and still E = Q(
√
−3). If v is an eigenvector for

the Hecke algebra, generating an automorphic representation π of U4(AQ), then

c∞(π̃) : z 7→
(

(z/z)a+3/2, (z/z)b+1/2, (z/z)−b−1/2, (z/z)−a−3/2
)
.

By [36, Table 1], the class number |ΣKL
| = 1, so M(V,KL) = V Γ, where Γ := U4(Q) ∩

KL. The dimension of M(V,KL) may be computed using Weyl’s character formula.

Example 1. a = 3,b = 0 One finds that dim(M(V,KL)) = 1. Calculating the trace
of T(2) on M(V,KL) by the method of [12], the eigenvalue of T(2) is 1872. The formula

for this is now (NP)a+3/2Tr(tP(π̃)) + (NP)a
(
p4−1
p+1

)
(previously a = 0 and 11/2 was in

place of 3/2), from which we deduce 49/2Tr(tP(π̃)) = 1872− 26(23 − 22 + 2− 1) = 1552,
and then

411/2Tr(tP(π̃)) = 4(1872− 26(23 − 22 + 2− 1)) = 6208.

For the cuspidal automorphic representation π̃ of GL4(AE) we write ∆9,1, since((z
z

)a+3/2
,
(z
z

)b+1/2
,
(z
z

)−b−1/2
,
(z
z

)−a−3/2
)

=

((z
z

)9/2
,
(z
z

)1/2
,
(z
z

)−1/2
,
(z
z

)−9/2
)
.

Now looking back at 18, ∆11 ⊕∆9,1 ⊕∆5(3)[3] gives us the correct

λ18(T(2)) = ((−24)2 − 2.211) + 6208 + 16((−6)2 − 2.25)(1 + 4 + 42) +
212 − 1

3
= −5355.

Example 2. a = 3,b = 1. One finds that dim(M(V,KL)) = 1. The eigenvalue of T(2)

is 0. This leads to

411/2Tr(tP(π̃)) = 4(0− 26(23 − 22 + 2− 1)) = −1280.

For the cuspidal automorphic representation π̃ of GL4(AE) we write ∆9,3. Looking back
at 16, ∆11 ⊕∆9,3 ⊕∆6[2]⊕ [2] gives us the correct

λ16(T(2)) = ((−24)2− 2.211)− 1280 + 16(2.26)(1 + 4) + 210

(
42 − 1

3

)
+

212 − 1

3
= 11925.

Remarkably, we find that, though the table poses ∆11 ⊕∆9,1 ⊕∆5(3)[3] for 18, ∆9,3[3]

would give the same T(2)-eigenvalue, since (−1280)(4−1 + 1 + 4) + 212−1
3 = −5355. How-

ever, if ∆9,3[3] were the correct global Arthur parameter, one could deduce a T(
√
−3)-

contribution from ∆9,3 that would be incompatible with the T(
√
−3) eigenvalue for 16,

assuming that ∆11⊕∆9,3⊕∆6[2]⊕ [2] for 16 (which is linked to a congruence in Example
5 of §6.1) is correct.
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Example 3. a = 4,b = 2. This time dim(M(V,KL)) = 2, and Tr(T(2)) is 2628. For
either of the two cuspidal automorphic representations π̃ of GL4(AE) (coming from two

Hecke eigenvectors) we write ∆
(2)
11,5. If ∆

(2)
11,5 ⊕∆8[2]⊕ [4] is correct for 12 and 13 then

411/2Tr(tP(π̃))+4((6
√
−14)2 +2.28)(1+4)+28

(
44 − 1

3

)
+

212 − 1

3
= 23319±162

√
193,

which would imply that 411/2Tr(tP(π̃)) = 34± 162
√

193, then

λ12,13(T(2)) = 411/2Tr(tP(π̃)) + 28(23 − 22 + 2− 1) = 1314± 162
√

193.

This is consistent with Tr(T(2)) = 2628 onM(V,KL), which was confirmed independently
by the method of [12].

4.3.2 P = (
√
−3)

The formulas for λi(TP) given at the end of §4.1 do not apply to the ramified prime
P = (

√
−3). The following seems to work, though we have not justified it.

λi(T(
√
−3)) = 311/2Tr(tP(π̃i)) + 36 − 1.

We must explain what we mean by tP(π̃i) (with P = (
√
−3)). We shall not attempt to

apply the formula to cases involving any ∆2a+3,2b+1. The automorphic representation [d]
of GLd(AE) is unramified at P, and we calculate tP([d]), an actual Satake parameter,
just as before. The automorphic representations ψ6 and ψ6 of GL1(AE) are unramified
at P, with Satake parameter (

√
−3)6 = −27 in both cases.

For ∆11 = Π̃∆, where ∆ is the normalised cusp form of weight 12 for SL2(Z), since

Π̃∆ is unramified at 3, the local representation of WQ3 (and therefore its restriction to
WEP

is unramified, and we just take tP(∆11) = t3(Π∆), an actual Satake parameter.

For ∆k−1 = Π̃f , where f ∈ Sk(Γ0(3), χ−3) with k odd, while the local representation of
WQ3 is ramified, its restriction to WEP

is unramified, and using a theorem of Langlands
and Carayol [24, Theorem 4.2.7 (3)(a)],

3(k−1)/2 tP(∆k−1) = diag(a3(f), 3k−1/a3(f)).

For k = 9 this is diag(45 − 18
√
−14, 45 + 18

√
−14), and for k = 10 it is diag(−27 +

108
√
−5,−27− 108

√
−5).

For ∆k−1(3), with k even and f a newform in Sk(Γ0(3)), ∆k−1(3) is ramified at P, but
we just try using the same formula, 3(k−1)/2 tP(∆k−1) = diag(a3(f), 3k−1/a3(f)). For
k = 6, 8, 10, 12 this is diag(32, 33), diag(−33,−34), diag(−34,−35) and diag(−35,−36)
respectively.

We now recover some of the TP-eigenvalues in the table.
1 : [12].

266448 =
312 − 1

2
+ 36 − 1.
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2 : ∆11 ⊕ [10].

89552 = 252 + 3

(
310 − 1

2

)
+ 36 − 1.

3 : ∆11(3)⊕ [10].

88328 = (−35 − 36) + 3

(
310 − 1

2

)
+ 36 − 1.

4 : ∆10[2]⊕ [8].

30032 = (−27− 27)(1 + 3) + 32

(
38 − 1

2

)
+ 36 − 1.

5 : ∆11 ⊕∆9(3)⊕ [8].

29528 = 252 + 3(−34 − 35) + 32

(
38 − 1

2

)
+ 36 − 1.

6 : ∆10[2]⊕∆7(3)⊕ [6].

9368 = (−27− 27)(1 + 3) + 32(−33 − 34) + 33

(
36 − 1

2

)
+ 36 − 1.

7 : ∆11(3)⊕∆8[2]⊕ [6].

10664 = (−35 − 36) + 3(45 + 45)(1 + 3) + 33

(
36 − 1

2

)
+ 36 − 1.

8 : ∆11 ⊕∆8[2]⊕ [6].

11888 = 252 + 3(45 + 45)(1 + 3) + 33

(
36 − 1

2

)
+ 36 − 1.

9 : ∆8[4]⊕ [4].

7568 = (45 + 45)(

(
34 − 1

2

)
+ 34

(
34 − 1

2

)
+ 36 − 1.

10 : ∆10[2]⊕∆6[2]⊕ [4].

1808 = (−27− 27)(1 + 3) + 32(−27− 27)(1 + 3) + 34

(
34 − 1

2

)
+ 36 − 1.

11 : ∆11 ⊕∆9(3)⊕∆6[2]⊕ [4].

1304 = 252 + 3(−34 − 35) + 32(−27− 27)(1 + 3) + 34

(
34 − 1

2

)
+ 36 − 1.
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14 : ∆11 ⊕∆6[4]⊕ [2].

−4528 = 252 + 3(−27− 27)(

(
34 − 1

2

)
+ 35(1 + 3) + 36 − 1.

15 : ∆11(3)⊕∆6[4]⊕ [2].

−5752 = (−35 − 36) + 3(−27− 27)(

(
34 − 1

2

)
+ 35(1 + 3) + 36 − 1.

17 : ∆6[6].

−18928 = (−27− 27)

(
36 − 1

2

)
+ 36 − 1.

19 : (∆5(3)⊗ ψ6)⊕ ψ6[4]⊕ ψ6[6], 20 : (∆5(3)⊗ ψ6)⊕ ψ6[4]⊕ ψ6[6].

−13312 = (32 + 33)(−27) + 3(−27)(

(
34 − 1

2

)
+ (−27)

(
36 − 1

2

)
+ 36 − 1.

4.4 Eisenstein lattices of rank 12

Recall from Section 3.3 the genus of 5 classes of rank-12,
√
−3-modular lattices, for which

we obtained the matrix for the Hecke operator T(2). One finds that the eigenvalues match
those of 1,2,4,8,9, so presumably the associated automorphic representations have the
same global Arthur parameters. Among the conjectured global Arthur parameters on
the list, these are precisely those that do not involve anything of level Γ0(3), ψ6, ψ6 or
some ∆2a+3,2b+1. The unitary group in question is isomorphic to the one we already
considered (quasi-split at all finite primes), but the open compact subgroups KL differ
locally at 3.

5 Congruences of Hecke eigenvalues

Proposition 5.1. Consider v ∈ M(triv,KL), with values in Z (as a function on the
20-element set ΣKL

). Suppose that v =
∑20

i=1 civi, with ci ∈ K = Q(
√

193) (in fact
ci ∈ Q unless i = 12 or 13). Suppose that q is a prime of OK with ordq(ci) < 0. Then
there exists some j 6= i such that

λi(T ) ≡ λj(T ) (mod q) ∀T ∈ T,

where T is the Z-subalgebra of End(M(triv,KL)) generated by all the T (γ).

Proof. Suppose for a contradiction that this is not the case. Then for each j 6= i there
is some T (j) ∈ T such that λi(T (j)) 6≡ λj(T (j)) (mod q). Now apply

∏
j 6=i(T (j) −

λj(T (j))) to both sides of v =
∑20

k=1 ckvk. The left-hand-side remains integral. On
the right-hand-side, all the terms for k 6= i are killed, whereas civi is multiplied by∏
j 6=i(λi(T (j))−λj(T (j))), which fails to cancel the q in the denominator of ci (hence of

at least one of the entries of civi), contradicting the integrality of the left-hand-side.
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It is clear that this proposition applies to a more general situation than that for which
it is stated, but we applied it as stated, with simple v such as (1, 0, . . . , 0)t, and used the
computed values of λk(T(2)) (and in one case also λk(T(

√
−3))) to find the j for a given i

and q, thus establishing the following congruences of Hecke eigenvalues:

2 ≡ 1 (mod 691);

4 ≡ 1 (mod 1847);

9 ≡ 1 (mod 809);

8 ≡ 2 (mod 809);

7 ≡ 3 (mod 809);

3 ≡ 1 (mod 73);

5 ≡ 2 (mod 61);

6 ≡ 4 (mod 41);

17 ≡ 19,20 (mod 13);

3 ≡ 2 (mod 17);

7 ≡ 8 (mod 17);

15 ≡ 14 (mod 17);

16 ≡ 11 (mod 11);

7 ≡ 12 (mod q), 7 ≡ 13 (mod q), with q | 59;

9 ≡ 12 (mod q), 9 ≡ 13 (mod q), with q | 23.

We have seen that all the conjectured global Arthur parameters are consistent with the
computations of Hecke eigenvalues, and while some were found by the kind of guess-and-
check process one might imagine, more often we were guided by congruences between
Hecke eigenvalues.
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5.1 Ramanujan-type congruences

The first batch of congruences is

2 ≡ 1 (mod 691);

4 ≡ 1 (mod 1847);

9 ≡ 1 (mod 809);

8 ≡ 2 (mod 809);

7 ≡ 3 (mod 809).

Consider 2 ≡ 1 (mod 691). Assuming the global Arthur parameters really are 1 : [12]
and 2 : ∆11 ⊕ [10], at any split prime (p) = PP we get

τ(p) + (p+ p2 + . . .+ p10) ≡ 1 + p+ . . .+ p11 (mod 691),

which boils down to Ramanujan’s congruence τ(p) ≡ 1 + p11 (mod 691). At an inert
prime (p) = P we get

(τ(p))2 − 2.p11 + (p2 + p4 + . . .+ p20) ≡ 1 + p2 + . . .+ p22 (mod 691),

which becomes (τ(p))2 ≡ 1 + 2.p11 + p22 = (1 + p11)2 (mod 691), the square of Ramanu-
jan’s congruence.

It was easy to guess that 1, which has the largest T(2) eigenvalue, should have global
Arthur parameter [12]. The congruence mod 691, which we recognised as the modulus
of Ramanujan’s congruence, then suggested trying ∆11 ⊕ [10] for 2, and when we did,
it recovered the T(2) eigenvalue correctly. Ultimately, the 691 arises as a divisor of the
Bernoulli number B12, equivalently of ζ(1− 12) or of ζ(12)/π12.

The space S11(Γ0(3), χ−3) is 2-dimensional, spanned by a Hecke eigenform g =

q+12
√
−5q2+(−27+108

√
−5)q3+304q4−1272

√
−5q5+(−6480−324

√
−5)q6+17324q7+. . .

and its Galois conjugate. It follows, from the fact that for p 6= 3 the adjoint T ∗p = 〈p〉Tp,
that ap(g) is real (hence rational) for split (in E) p, purely imaginary (hence with rational
square) for inert p. The prime 1847 is a divisor of the generalised Bernoulli number
B11,χ−3 , equivalently of L(1− 11, χ−3) or of L(11, χ−3)/(

√
3π11). There is a congruence

between the Hecke eigenvalues of g and an Eisenstein series E
1,χ−3

11 ∈M11(Γ0(3), χ−3):

ap(g) ≡ 1 + χ−3(p)p10 (mod q),

with (1847) = qq in Q(
√
−5). A proof of this kind of generalised Ramanujan-style con-

gruence, presumably well-known, is recorded in [11, Proposition 2.1]. As a consequence,
for p split in E we have

ap(g) ≡ 1 + p10 (mod 1847),
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while for p inert in E we have

ap(g)2 ≡ (1− p10)2 (mod 1847).

Now consider 4 ≡ 1 (mod 1847), assuming that the global Arthur parameters really
are 1 : [12] and 4 : ∆10[2]⊕ [8]. At a split prime p we get

(ap(g))(1 + p) + (p2 + p3 + . . .+ p9) ≡ 1 + p+ . . .+ p11 (mod 1847),

which becomes (1 + p) times the above ap(g) ≡ 1 + p10 (mod 1847), while at an inert p
we get

(ap(g)2 + 2.p10)(1 + p2) + (p4 + p6 + . . .+ p18) ≡ 1 + p2 + . . .+ p22 (mod 1847),

which becomes (1 + p2) times the above ap(g)2 ≡ (1− p10)2 (mod 1847).
Similarly, 809 divides L(1− 9, χ−3), and the remaining congruences in this first batch

may be accounted for by a congruence between a cusp form and an Eisenstein series in
M9(Γ0(3), χ−3). In fact the congruence 9 ≡ 1 (mod 809) leads directly to the guess for
the global Arthur parameter of 9, and 8 ≡ 2 (mod 809) to that for 8.

5.2 Ramanujan-type congruences of local origin

The next batch of congruences is

3 ≡ 1 (mod 73);

5 ≡ 2 (mod 61);

6 ≡ 4 (mod 41);

17 ≡ 19,20 (mod 13).

The space S12(Γ0(3)) is spanned by a Hecke eigenform f = q+ 78q2−243q3 + . . .. For
all primes p 6= 3 there is a congruence

ap(f) ≡ 1 + p11 (mod 73),

which is of the same shape as Ramanujan’s, but whereas ∆ has level 1 (same as E12), f
has level 3. The modulus arises as a divisor of 312−1, and may be viewed as a divisor of
ζ{3}(12)/π12, where ζ{3}(s) = (1 − 3−s)ζ(s), the Riemann zeta function with the Euler
factor at 3 omitted. Such congruences “of local origin” were anticipated by Harder in
[21, §2.9], and proved in [14, Theorem 1.1] or [4, Theorem 1].

Assuming the global Arthur parameters really are 1 : [12] and 3 : ∆11(3) ⊕ [10],
this congruence of local origin accounts for 3 ≡ 1 (mod 73) in exactly the same way
as Ramanujan’s congruence accounts for 2 ≡ 1 (mod 691). In fact, recognition of the
modulus in the congruence 3 ≡ 1 (mod 73) led to the guess 3 : ∆11(3) ⊕ [10], which
then produced the correct λ3(T(2)). Combined with the last congruence of the previous
subsection, this then allowed us to guess the global Arthur parameter for 7 too.

The congruences 5 ≡ 2 (mod 61) and 6 ≡ 4 (mod 41) may similarly be accounted for
by Ramanujan-type congruences of local origin at the prime 3, with 61 | (310 − 1) (the
example from [21, §2.9]) and 41 | (38 − 1). Note that S10(Γ0(3)) is 2-dimensional, but
the Hecke eigenform q − 36q2 − 81q3 . . . is the one participating in the congruence.
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5.3 Level-raising congruences

The next batch of congruences is

3 ≡ 2 (mod 17);

7 ≡ 8 (mod 17);

15 ≡ 14 (mod 17).

Since a3(∆) = 252 ≡ −(35 + 36) (mod 17), ∆ satisfies the criterion

ap(∆) ≡ ±(p(k/2)−1 + p(k/2)) (mod `)

(with k = 12, p = 3 and ` = 17) for raising the level by p, i.e. there exists a newform
f ∈ S12(Γ0(3)) such that

aq(f) ≡ aq(∆) (mod 17) ∀q 6= 3.

This raising of the level is a theorem of Ribet [34] in the case k = 2, completed by
Diamond in general for k ≥ 2 [10]. In other words, ∆ and f share the same residual
Galois representation at ` = 17. (Note that the conditions that this should be irreducible,
and that ` > k + 1, ` 6= p are satisfied.)

On the basis of Ramanujan-style congruences we had already guessed 2 : ∆11 ⊕ [10],
3 : ∆11(3) ⊕ [10], 7 : ∆11(3) ⊕ ∆8[2] ⊕ [6] and 8 : ∆11 ⊕ ∆8[2] ⊕ [6]. The congruences
3 ≡ 2 (mod 17) and 7 ≡ 8 (mod 17) are now perfectly accounted for by the above level-
raising congruence, providing further evidence for the conjectured Arthur parameters.
The congruence 15 ≡ 14 (mod 17) now suggests the involvement of ∆11 and ∆11(3) in
14 and 15, and a bit of guesswork aimed at filling in the gaps in c∞(π̃i) led to proposals
that produced the correct λi(T(2)). Congruences 2 ≡ 14 (mod 17) and 3 ≡ 15 (mod 17)
appear to hold if we look just at the T(2)-eigenvalues, but the T(

√
−3)-eigenvalues rule

them out.

6 Eisenstein congruences for U(2, 2)

In [3], a general conjecture was made on congruences of Hecke eigenvalues, between
cuspidal automorphic representations of split reductive groups G and representations
parabolically induced from Levi subgroupsM of maximal parabolic subgroups P , modulo
divisors of critical values of L-functions associated with the latter. In the case G = GL2

with P a Borel subgroup, M ' GL1 × GL1, it predicts the known Ramanujan-style
congruences we have already met (including those of local origin). In the case G = GSp2,
P the Siegel parabolic, M ' GL2×GL1, one recovers a conjecture of Harder [20]. With
some small modifications one can relax the split condition, and for unitary groups this
is explained in [13].

For n ≥ 1 let U(n, n) be the linear algebraic group over Q whose group of A-rational
points is given by

U(n, n)(A) = {g ∈ GLn(A⊗Q E) | g†Jng = Jn} (32)
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for any commutative Q-algebra A, where Jn =

[
0n −In
In 0n

]
. This is the unitary group

associated to an Hermitian form of signature (n, n), since
√
−3Jn is an Hermitian matrix.

In the case n = 2, there are two classes of maximal parabolic subgroups. There is the

Siegel parabolic, with Levi subgroup M ' GL2,E , with g 7→
[
g 0
0 (g†)−1

]
, and the

Klingen parabolic, with Levi subgroup M ' GL1,E × U(1, 1), with

(
e,

[
a b
c d

])
7→

e 0 0 0
0 a 0 b
0 0 (e†)−1 0
0 c 0 d

.

6.1 Klingen parabolic

Conjecture 6.1. Let f ∈ Sk′(Γ0(3)) be a normalised Hecke eigenform. Suppose that

ordq

(
L{3}(f, (k

′/2) + b+ 1)

(2πi)(k′/2)+b+1Ω(−1)(k
′/2)+b+1

)
> 0

or

ordq

(
L{3}(f, χ−3, (k

′/2) + b+ 1)

i
√

3(2πi)(k′/2)+b+1Ω(−1)(k
′/2)+b

)
> 0,

where q divides a rational prime q > k′, and 0 < b < (k′/2)− 1. (For the correct scaling
of Deligne period Ω±, see [13, §4]. That used by the Magma command LRatio [5] is good
enough for our examples, where q is not a prime of congruence for f in Sk′(Γ0(3)).)
Then, letting a = (k′ − 4)/2, there exists a Hecke eigenform v ∈ M(Va,b,KL) (notation
as in §4.3.1) such that

λv(TP) ≡

{
ap(f) + pa+b+2 + pa−b+1 (mod q) if (p) = PP;

(ap(f)2 − 2pk
′−1) + pk

′−4(p3 − p2 + p− 1) (mod q) if (p) = P.

This conjecture is less general than that stated in [13, §8]. To stick to what is nar-
rowly applicable to the situation here, we have put E = Q(

√
−3) rather than a more

general quadratic field, and restricted to f of level Γ0(3). This is not necessary, if we
simply modify the set Σ of “bad” primes excluded from the Euler product. The general
conjecture asserts the existence of a cuspidal automorphic representation Π̃ of U(2, 2)
with Hecke eigenvalues congruent mod q to those of an induced representation coming
from the base-change to GL2(AE) of πf . This induced representation depends on a real
parameter s, which in our case is b+ (1/2). The right hand side of the congruence is the
Hecke eigenvalue for this induced representation. The conjecture in [13] says just that Π̃
has set of ramified primes no bigger than Σ. We have gone a little further, in assuming
that Π̃ has the same global Arthur parameter as some automorphic representation of
U4(AQ), with a KL-fixed vector.
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Example 4. Let f ∈ S12(Γ0(3)) be the unique normalised newform f = q + 78q2 −
243q3 . . .. We have k′ = 12, a = 4. Let b = 2, so (k′/2) + b + 1 = 9. Using Magma,
LRatio(fχ−3 , 9) = 59. The conjecture predicts a congruence of Hecke eigenvalues in-

volving one of the ∆
(2)
11,5, modulo a divisor q of 59 (and consequently for the other one

modulo q). Note that 2a+3 = 11, 2b+1 = 5. This congruence would account for 7 ≡ 12
(mod q) and 7 ≡ 13 (mod q), which therefore lend support to this instance of the above

conjecture. Recall the guesses 7 : ∆11(3)⊕∆8[2]⊕ [6] and 12 : ∆
(2)
11,5⊕∆8[2]⊕ [4]. Note

that pa+b+2 + pa−b+1 = p8 + p3 = p3(p5 + 1), matching perfectly what is left over from
the cancellation between [6] and [4].

Example 5. Let f = q− 36q2− 81q3 . . ., one of the normalised newforms in S10(Γ0(3)).
We have k′ = 10, a = 3. Let b = 1, so (k′/2)+b+1 = 7. Using Magma, LRatio(fχ−3 , 7) =
22. The conjecture predicts a congruence mod 11 of Hecke eigenvalues, involving ∆9,3.
Note that 2a+ 3 = 9, 2b+ 1 = 3. This congruence would account for 11 ≡ 16 (mod 11),
which therefore lends support to the above instance of the conjecture. Recall the guesses
11 : ∆11⊕∆9(3)⊕∆6[2]⊕[4] and 16 : ∆11⊕∆9,3⊕∆6[2]⊕[2]. Note that pa+b+2+pa−b+1 =
p6 + p3 = p3(p3 + 1), matching perfectly what is left over from the cancellation between
[4] and [2]. Note also that the condition q > k′ only just holds here, with 11 > 10.

6.2 Siegel parabolic

Conjecture 6.2. Let f ∈ Sk′(Γ0(3), χ−3) (odd k′ > 1) be a normalised Hecke eigenform.
Suppose that

ordq

(
L{3}(Sym2f, k′ + s)

(2πi)k′+2s+1〈f, f〉

)
> 0,

where q divides a rational prime q > 2k′, and s is odd with 1 < s ≤ k′ − 2. Let
a = (k′ − 4 + s)/2 and b = (k′ − 2 − s)/2, so k′ = a + b + 3, s = a − b + 1 and
k′ + s = 2a + 4. Then there exists a Hecke eigenform v ∈ M(Va,b,KL) such that
(mod q)

λv(TP) ≡

{
ap(f)(1 + ps) if (p) = PP;

(ap(f)2 + 2pk
′−1)(1 + p2s) + pk

′+s−4(p3 − p2 + p− 1) if (p) = P.

Similar remarks apply, concerning the relation of this to the conjecture in [13, §7], as
in the previous subsection. The use of (2πi)k

′+2s+1〈f, f〉 for the Deligne period is OK
in our examples, where q is not a prime of congruence for f in Sk′(Γ0(3), χ−3).

Example 6. Let f be the Hecke eigenform q + 6
√
−14q2 + (45− 18

√
−14)q3 . . . which,

with its Galois conjugate, spans S9(Γ0(3), χ−3). We have k′ = 9. Take s = 3, so
k′ + s = 12, a = 4, b = 2, 2a+ 1 = 11, 2b+ 1 = 5. The Euler factor at 3 in L(Sym2f, s)
(not the same s), which is missing in L{3}(Sym2f, s), is P (3−s)−1, where P (X) = det(I−
Sym2ρf (Frob−1

3 )|(Sym2V )I3), where ρf is a λ-adic Galois representation attached to f ,
on a 2-dimensional space V , and we are taking invariants for an inertia subgroup at
3. According to a theorem of Langlands and Carayol, for which a convenient reference
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is [24, Theorem 4.2.7 (3)(a)], the action of I3 on V is diagonalisable, with the trivial
character and the character of order 2 appearing. On the unramified part, Frob−1

3 acts
by the U3 eigenvalue, which is the coefficient of q3, and det ρf is the product of the
(k′ − 1) power of the cyclotomic character and the Galois character associated to χ−3.
It follows that

P (X) = 1 + 5022X + 43046721X2,

noting that 43046721 = 316, −5022 = (45 − 18
√
−14)2 + (45 + 18

√
−14)2 and (45 −

18
√
−14)(45+18

√
−14) = 38. Now P (3−12) = 2523

36
, and 23 > 2k′ = 18, so the conjecture

predicts a congruence mod q of Hecke eigenvalues, involving ∆
(2)
11,5, where q | 23. This

congruence would account for 9 ≡ 12 (mod q) and 9 ≡ 13 (mod q), which therefore
lend support to this instance of the above conjecture. Recall the guesses 9 : ∆8[4]⊕ [4]

and 12 : ∆
(2)
11,5 ⊕∆8[2]⊕ [4]. The ap(f)(1 + p3) is exactly what is left after cancellation

between ∆8[4] and ∆8[2].

Remark 6.3. In [12] (repeated in [13]), we looked at the case k′ = 9, s = 5, with q = 19
or 37, gathering a scrap of evidence for the conjectured congruences by computing the
Hecke eigenvalues for T(2) on the 2-dimensional space M(V5,1,KL). Contrary to what
was stated there, due to a misunderstanding about the Euler factor at 3 in the L-value
computed by the formula, the case q = 19 actually comes from the missing Euler factor
at 3 rather than the complete L-value:

P (3−14) =
25.53.7.19

312
.

7 Hermitian theta series

Let
Hm = {Z ∈Mn(C) | i(Z† − Z) > 0}

be the Hermitian upper half space of degree m. Given an integral Hermitian lattice
L ⊆ V12, we define its Hermitian theta series of degree m, ϑ(m)(L) : Hm → C by

ϑ(m)(L,Z) :=
∑
x∈Lm

exp(πiTr(〈x,x〉Z)).

Applying [35, Lemma 2.1], we find that if L is unimodular (e.g. L = O12
E ) then ϑ(m)(L)

is a modular form of weight 12 for the group Γ̃(m) :={(
A B
C D

)
∈ U(m,m)(Q) | A,D ∈Mm(OE), B ∈ (

√
−3)−1Mm(OE), C ∈ 3

√
−3Mm(OE)

}
,

i.e.

ϑ(m)(L, (AZ +B)(CZ +D)−1) = |CZ +D|12 ϑ(m)(L,Z) ∀
(
A B
C D

)
∈ Γ̃(m).
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Extending by linearity, we obtain Θ(m) : M(triv,KL)→M
(m)
12 (Γ̃(m)), i.e.

Θ(m)(
∑

xiei) =
∑

xi ϑ
(m)(Li).

Given a Hecke eigenform f ∈ S2k+1(Γ0(3), χ−3) with 2k < 12, we may apply a theorem
of Ikeda [26] to obtain a Hecke eigenform I(12−2k)(f) ∈ S12(Γ(12−2k)), where Γ(m) :=
U(m,m)(Q) ∩M2m(OE) is the standard Hermitian modular group. It is easy to show

that if f(Z) ∈M12(Γ(m)) then for any N ∈ Z>0, f(NZ) ∈M12(Γ
(m)
N ), where

Γ
(m)
N :=

{(
A B
C D

)
∈ U(m,m)(Q) | A,D ∈Mm(OE), B ∈ N−1Mm(OE), C ∈ NMm(OE)

}
.

Then Γ̃(m) ⊆ Γ
(m)
3 . It follows that I(12−2k)(f)(3Z) ∈ S12(Γ̃(12−2k)). Following [7,

VII,Corollaire 3.4], and looking back at the conjectured global Arthur parameters in
our table, it is natural to guess something like the following.

Conjecture 7.1. .

1. Θ(2)(v4) ∈ Span{I(2)(f)(3Z)}, with f ∈ S11(Γ0(3), χ−3);

2. Θ(4)(v9) ∈ Span{I(4)(f)(3Z)}, with f ∈ S9(Γ0(3), χ−3);

3. Θ(6)(v17) ∈ Span{I(6)(f)(3Z)}, with f ∈ S7(Γ0(3), χ−3).

Further, comparing with [25, §7], we should expect Θ(3)(v6), Θ(3)(v7),Θ(3)(v8), Θ(4)(v10),
Θ(5)(v14), Θ(5)(v15) all to come from some kind of Hermitian Miyawaki lifts, and Θ(4)(v11)
from an iterated Hermitian Miyawaki lift.

Recall from §4.4 that the space of scalar-valued algebraic modular forms for the genus
of 5 classes of rank-12,

√
−3-modular lattices has a basis of eigenvectors {w1, w2, w4, w8, w9},

with T(2)-eigenvalues matching those of {v1, v2, v4, v8, v9}. Their Hermitian theta series

Θ(m)(wi) lie in S12(Γ(m)) [23, Theorem 2.1],[9] and it was conjectured in [22, Remark
3(b)] that Θ(4)(w9) is an Hermitian Ikeda lift.
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