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Résumé. Nous trouvons des examples expérimentaux de congru-
ences des valeurs propres de Hecke entre des représentations auto-
morphes de groupes tels que GSp2(A), SO(4, 3)(A) et SO(5, 4)(A),
dans lesquelles le module premier devrait, pour diverses raisons,
apparâıtre dans la partie algébrique d’une valeur L ”produit ten-
soriel” critique associée à des représentations automorphes cus-
pidales de GL2(A) et GSp2(A). En employant des techniques
spéciales pour évaluer des fonctions L avec peu de coefficients con-
nus, nous calculons des approximations suffisantes pour détecter
le diviseur premier anticipé.

Abstract. We find experimental examples of congruences of
Hecke eigenvalues between automorphic representations of groups
such as GSp2(A), SO(4, 3)(A) and SO(5, 4)(A), where the prime
modulus should, for various reasons, appear in the algebraic part
of a critical “tensor-product” L-value associated to cuspidal auto-
morphic representations of GL2(A) and GSp2(A). Using special
techniques for evaluating L-functions with few known coefficients,
we compute sufficiently good approximations to detect the antic-
ipated prime divisors.

1. Introduction

This paper is about divisors of critical values of L-functions as moduli of
congruences between Hecke eigenvalues of automorphic forms. It is made
possible by three separate developments in computational number theory.

(1) Mégarbané’s large-scale computation of traces of Hecke operators on
spaces of level-one algebraic modular forms, for SO(7), SO(8) and
SO(9) [30], following the endoscopic classification of the associated
automorphic representations by Chenevier and Renard [9].

2010 Mathematics Subject Classification. 11F33, 11F46, 14G10.
Mots-clefs. Automorphic representations, Hecke-eigenvalues, congruences, L-values.



2 Jonas Bergström, Neil Dummigan, David Farmer, Sally Koutsoliotas

(2) Faber and van der Geer’s computation of traces of Hecke operators on
spaces of vector-valued Siegel modular forms of genus 2 and level one,
using point counts on hyperelliptic curves of genus 2 over finite fields
[20]. When the space is 1-dimensional, this gives Hecke eigenvalues.
They computed traces of Hecke operators T (p) and T (p2) for p, p2 ≤
37. The first-named author of this paper refined their method and
extended the bound to 179. The data is available at http://smf.

compositio.nl/.
(3) A new technique for computing good approximations to values of

L-functions satisfying functional equations, given only a few coeffi-
cients in the Dirichlet series, developed by the third-named author
and Ryan [21]. This combines, in such a way as to make unknown
errors cancel, approximations obtained by the method of Rubinstein
[37], which is related to the technique implemented in Magma [27],
which is described in [15].

Conjecture 4.2 of [2] is a very wide generalisation of Ramanujan’s mod
691 congruence, to “Eisenstein” congruences between Hecke eigenvalues of
automorphic representations of G(A), where A is the adele ring and G/Q
is any connected, split reductive group. On one side of the congruence
is a cuspidal automorphic representation Π̃. On the other is one induced
from a cuspidal automorphic representation Π of the Levi subgroup M of a
maximal parabolic subgroup P . The modulus of the congruence comes from
a critical value of a certain L-function, associated to Π and to the adjoint
representation of the L-group M̂ on the Lie algebra n̂ of the unipotent
radical of the maximal parabolic subgroup P̂ of Ĝ. Starting from Π, we
conjecture the existence of Π̃, satisfying the congruence.

In [3] we already used Mégarbané’s data for SO(7) and SO(8), observing
experimental Eisenstein congruences for the cases G = SO(4, 3), M =
GL1 × SO(3, 2) and G = SO(4, 4), M = GL2 × SO(2, 2). To support the
conjecture, we then needed to find the observed moduli in the corresponding
L-values. In the SO(4, 4) case these were triple product L-values for elliptic
modular forms, which were computed exactly by Ibukiyama and Katsurada,
using the pull-back of a genus 3 Siegel-Eisenstein series. In the SO(4, 3)
case they were spinor L-values for vector-valued Siegel modular forms of
genus 2 and level one (note that SO(3, 2) ' PGSp2), and we resorted to
sufficiently good numerical approximations. For this, Magma was good
enough, and we used the Hecke eigenvalues computed by the first-named
author, which went as far as the bound 149 at that point.

For this paper we used Mégarbané’s data for SO(9) to find an experi-
mental Eisenstein congruence (mod q = 17) in the case G = SO(5, 4), M =
GL2 × SO(3, 2) (see Example 5 in §7). In this case, the associated L-
function has degree-8 Euler factors, and is the “tensor-product” of the



GL2 ×GSp2 L-values and Hecke eigenvalue congruences 3

Hecke L-function of an elliptic modular form and the spinor L-function of
a vector-valued Siegel modular form of genus 2 (both level one). We also
used Mégarbané’s data for SO(7) to find experimental “endoscopic” congru-
ences (mod q = 71 and 61), between functorial lifts from SO(2, 1)×SO(3, 2)
to SO(4, 3) and non-lifts on SO(4, 3) (see Examples 3 and 4 in §6, and note
that SO(2, 1) ' PGL2). Here, as with the Eisenstein congruences, a gen-
eralisation of a construction of Ribet leads from the congruence, via an
extension of mod q Galois representations, to an element of order q in a
Bloch-Kato Selmer group, which according to the Bloch-Kato conjecture
ought to show up in a certain critical L-value. For these SO(7) endoscopic
congruences, again it is a tensor-product GL2 × GSp2 L-function, for an
elliptic modular form and a vector-valued Siegel modular form of genus
2. These congruences are analogous to those between Yoshida lifts and
non-lifts (Siegel modular forms of genus 2) appearing in [6], where the L-
function is a degree-4 tensor-product L-function for two elliptic modular
forms.

To obtain sufficiently good approximations to the GL2×GSp2 L-values,
Magma requires many more coefficients in the Dirichlet series than we
could obtain using the computations of Hecke eigenvalues for Siegel mod-
ular forms. (See [3, §7] for a comment on the difficulty of extending these
much further.) So for this the third and fourth-named authors used the
kind of averaging technique described in [21]. This is described in §4.3–
§4.6, and the results are in §4.2. The numerical approximations to ratios of
L-values (and appropriate powers of π) are very close to rational numbers,
and in these rational numbers we find the expected factors of 17, 71 and
61. We also stumbled on some other factors of 839 and 61 (again), and
realised at that point that these could also be explained using the Bloch-
Kato conjecture, in terms of Eisenstein congruences for G = GSp4. For
q = 839 (Example 1), P is the Klingen parabolic subgroup (Kurokawa-
Mizumoto congruences) while for q = 61 (Example 2), P is the Siegel
parabolic subgroup (Harder’s conjecture). This is explained in Section 5.
In fact, following basic background in §2, we begin with these examples in
§3, where a rougher heuristic is given. As noted in §3.1, §3.2, the accidental
discovery of these experimental divisibilities led to the proof of the anal-
ogous divisibilities in the scalar-valued case, where the necessary pullback
formulas are known. However, the experimental congruences and divisi-
bilities of L-values involving SO(7) and SO(9) are presumably some way
beyond what can currently be proved (with the exception of the congruence
in §6, Example 4). This justifies the effort made to take the experimental
results as far as possible, extending to types of congruences and numerical
techniques not considered or employed in [3].
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In §9 we use Mégarbané’s SO(9) data to observe an experimental endo-
scopic congruence mod q = 37, between a functorial lift from SO(3, 2) ×
SO(3, 2) to SO(5, 4) and a non-lift on SO(5, 4). Applying the same tech-
niques to the associated GSp2 × GSp2 L-values, we cannot obtain such
reliable and accurate approximations as before, but are still able to see the
expected factor of 37.

As should already be clear from this introduction, the data that was
computed by Thomas Mégarbané was indispensable, and we are grateful to
him for providing it to us before it was publicly available. We thank also
Mark Watkins for pointing out errors in an earlier version of this paper,
including one that had a very significant impact on §8, and for corroborating
the new computation thus enabled.

2. GL2 ×GSp2 L-functions

Let f be a normalised cuspidal Hecke eigenform of weight ` for SL2(Z).

Then f
(
aτ+b
cτ+d

)
= (cτ+d)`f(τ) for all

(
a b
c d

)
∈ SL2(Z), and τ ∈ H = {τ ∈

C : Im(τ) > 0}, and f(τ) =
∑∞

n=1 an(f)qn, with q = e2πiτ and a1 = 1.
The Fourier coefficients are also the eigenvalues of Hecke operators. The
Hecke L-function is

L(s, f) =
∏

p prime

(1− ap(f)p−s + p`−1−2s)−1.

Let 1− ap(f)X + p`−1X2 =: (1− αp,1X)(1− αp,2X).

Let F be a cuspidal Hecke eigenform of weight Symj⊗detk for Sp2(Z) :=

{g ∈M4(Z) : tgJg = J}, where J =

(
02 −I2

I2 02

)
. Then F : H2 → V , where

H2 = {Z ∈ M2(C) : tZ = Z, Im(Z) > 0} is Siegel’s upper half space

of genus 2, V is the space of the representation ρ = Symj(C2) ⊗ detk of
GL2(C), and

F
(
(AZ +B)(CZ +D)−1

)
= ρ(CZ +D)(F (Z)) ∀

(
A B
C D

)
∈ Sp2(Z).

Let the elements T (p), T (p2) of the genus-2 Hecke algebra be as in [43,
§16] (with the scaling as following Definition 8). Let λF (p), λF (p2) be
the respective eigenvalues for these operators acting on F . The spinor
L-function of F is L(s, F, Spin) =

∏
p prime Lp(s, F, Spin), where

Lp(s, F, Spin)−1 = 1− λF (p)p−s + (λF (p)2 − λF (p2)− pj+2k−4)p−2s

− λF (p)pj+2k−3−3s + p2j+4k−6−4s.

Let Lp(s, F, Spin)−1 =:
∏4
j=1(1− βp,jp−s).
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Now we define L(s, f ⊗ F ) :=
∏
p prime Lp(s, f ⊗ F ), where

Lp(s, f ⊗ F )−1 :=
2∏
i=1

4∏
j=1

(1− αp,iβp,jp−s).

To understand the conjectured functional equation and critical values for
this L-function, it is convenient to introduce the motive Mf attached to f ,
and the conjectured motive MF attached to F , of ranks 2 and 4 respectively.
The Betti realisations have Hodge decompositions Mf,B ⊗ C ' H0,`−1 ⊕
H`−1,0 and MF,B⊗C ' H0,j+2k−3⊕Hj+2k−3,0⊕Hk−2,j+k−1⊕Hj+k−1,k−2,
with each Hp,q 1-dimensional. The L-functions associated to (q-adic re-
alisations of) Mf and MF are L(s, f) and L(s, F, Spin) respectively. The
L-function L(s, f ⊗ F ) is associated to the rank-8 motive M := Mf ⊗MF ,
which has Hodge decomposition MB ⊗C ' ⊕(Hp,q ⊕Hq,p), where p+ q =
j+2k+`−4 and p ∈ {0, k−2,min{`−1, j+2k−3},min{j+k−1, k+`−3}} =:
{p1, p2, p3, p4}, where we label the elements so that p1 ≤ p2 ≤ p3 ≤ p4. Ac-
cording to [12, Table 5.3], each (p, q) contributes iq−p+1 to the sign in the
conjectural functional equation, and using the fact that j is even, one checks
easily that the sign should be +1. Following the recipe in [39] (or see again

[12, Table 5.3]), the product of gamma factors is γ(s) =
∏4
i=1 ΓC(s − pi),

where ΓC(s) := (2π)−sΓ(s). Note that, following [7, Remark 6.2], it makes
no difference to replace any pi by qi = j + 2k + ` − 4 − pi. Anyway, the
conjectured functional equation is Λ(j + 2k + ` − 3 − s) = Λ(s), where
Λ(s) := γ(s)L(s, f ⊗ F ). The meromorphic continuation and functional
equation have been proved by Böcherer and Heim [7] in the case that F is
scalar valued (i.e. j = 0), Furusawa [23] having already dealt with the even
more special case ` = k (and j = 0).

The critical values are L(t, f ⊗ F ) for integers t such that neither γ(s)
nor γ(j + 2k + ` − 3 − s) has a pole at s = t. This is for p4 < t ≤ q4.
In all our examples, the coefficient field of Mf and MF (hence of M) is
Q, so we suppose for convenience that this is the case. (Then MB and
MdR are Q-vector spaces.) For each critical t, there is a Deligne period
c+(M(t)) defined as in [12], up to Q× multiples. (It is the determinant, with
respect to bases of 4-dimensional Q-vector spaces MB(t)+ and MdR(t)/Fil0,
of an isomorphism between MB(t)+⊗C and (MdR(t)/Fil0)⊗C.) Deligne’s
conjecture (in this instance) is that L(s, f ⊗ F )/c+(M(t)) ∈ Q×. Later we
shall sometimes make a special choice of c+(M(t)), and define Lalg(t, f ⊗
F ) = L(t, f ⊗ F )/c+(M(t)). If t, t′ are critical points with t ≡ t′ (mod 2),

then c+(M(t′)) = (2πi)4(t′−t)c+(M(t)), because MB(t′) = MB(t)(2πi)t
′−t

while MdR(t)/Fil0 does not change for t within the critical range. So the

ratio
Lalg(t′,f⊗F )
Lalg(t,f⊗F ) = L(t′,f⊗F )

(2πi)4(t
′−t)L(t,f⊗F )

, which should be a rational number, is

independent of any choices. Prime divisors of its numerator or denominator
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will turn out to be significant. Actually, for these tensor product motives
the condition t ≡ t′ (mod 2) is unnecessary [45, Cor.1, p.1188], but among
our examples, only for the one in §8 are there so few critical points that we
would need to relax it.

3. Expected consequences of congruences: the rough version

3.1. Kurokawa-Mizumoto type. Suppose that ` = j + k, with ` as
above, j, k non-negative even integers. There is a vector-valued Klingen-
Eisenstein series [f ]j , a non-cuspidal genus-2 Siegel modular form of weight

Symj ⊗ detk for Sp2(Z), satisfying Φ([f ]j) = f , where Φ is the Siegel
operator. (See [1, §1] for more details.) Let q > 2` be a prime divi-
sor of the numerator of Lalg(2` − 2 − j,Sym2f), which we can take to be

L(2`− 2− j,Sym2f)/π2k+`−3(f, f), where (f, f) is the Petersson norm and
L(s,Sym2f) =

∏
p prime((1−α2

1p
−s)(1−α1α2p

−s)(1−α2
2p
−s))−1. Sometimes

it is possible to prove a congruence (mod q) of Hecke eigenvalues between

[f ]j and some cuspidal Hecke eigenform F , also of weight Symj ⊗ detk

for Sp2(Z). The first examples were proved by Kurokawa and Mizumoto
[26, 32], with further examples proved by Satoh [38] and in [16].

Note that on [f ]j the eigenvalue of T (p) is ap(f)(1 + pk−2), in fact its
spinor L-function (defined in terms of Hecke eigenvalues just as for the
cuspidal case) is L(s, [f ]j ,Spin) = L(s, f)L(s − (k − 2), f). Then L(s, f ⊗
[f ]j) = L(s, f ⊗ f)L(s − (k − 2), f ⊗ f). Since L(s, f ⊗ f) = ζ(s − (` −
1))L(s,Sym2f), we find that

L(s, f⊗[f ]j) = ζ(s−(`−1))ζ(s−(`+k−3))L(s,Sym2f)L(s−(k−2),Sym2f).

In this situation where ` = j + k, the critical range for L(s, f ⊗ F ) is
` ≤ t ≤ `+k−3. The factor ζ(s−(`+k−3)) is non-zero at s = `+k−3, but
has a trivial zero at all other odd s in the critical range, e.g. at s = `+k−5.

Checking the other factors, we find that
L(s,f⊗[f ]j)

π8L(s−2,f⊗[f ]j)
has a simple pole

at s = `+ k − 3.
The mod q congruence of Hecke eigenvalues between [f ]j and F , hence

between coefficients of the Dirichlet series for L(s, f⊗ [f ]j) and L(s, f⊗F ),

might lead one roughly to expect that the pole of
L(s,f⊗[f ]j)

π8L(s−2,f⊗[f ]j)
at the

rightmost critical point s = ` + k − 3 (for L(s, f ⊗ F )) should cause a

pole mod q of L(j+2k−3,f⊗F )
π8L(j+2k−5,f⊗F )

, i.e. a factor of q in its denominator. Since

j + 2k − 5 could be replaced by any odd s in the critical range strictly to
the left of j + 2k − 3, we can think of this q as being in the denominator
of Lalg(j + 2k − 3, f ⊗ F ), without worrying too much about the correct
scaling.

We have so far chosen the “motivic” normalisation of the L-function,
but it is also convenient to consider the “unitary” normalisation L(s+ (j+
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2k + ` − 4)/2, f ⊗ F ), which should satisfy a functional equation relating
s and 1 − s. This normalisation is natural if we consider the L-function
as arising from automorphic representations πf and πF of GL2(A) and
GSp2(A) respectively, where A is the adele ring, so we set L(s, πf ⊗ πF ) :=
L(s+(j+2k+`−4)/2, f⊗F ). We then expect to find q in the denominator

of
L((k−2)/2,πf⊗πF )

π8L((k−6)/2,πf⊗πF )
.

Example 1. ` = 16, j = 4, k = 12, q = 839. The congruence is [16,

Proposition 4.1]. We expect
L(5,πf⊗πF )

π8L(3,πf⊗πF )
to be a rational number with

839 in the denominator. In fact, if we observe it in the denominator of
L(5,πf⊗πF )

π8L(3,πf⊗πF )
(or equivalently in the numerator of

π8L(3,πf⊗πF )
L(5,πf⊗πF ) ), but not

in the denominator of
π8L(1,πf⊗πF )
L(3,πf⊗πF ) , we should feel reasonably confident

that it is coming from the denominator of Lalg(5, πf ⊗ πF ) rather than the
numerator of Lalg(3, πf ⊗ πF ), since it seems unlikely that it would also
happen to divide the numerator of Lalg(1, πf ⊗ πF ).

In our numerical examples in §4, j > 0 and F is vector-valued. However,
in the case that j = 0 and F is scalar-valued, a formula of Heim, for the
restriction of a genus 5 Eisenstein series to H1 × H2 × H2 [25], in which
appears the L-value in question, allows one to actually prove the expected
divisibility [18].

3.2. Harder type. Suppose that k′ = j + 2k − 2, with k′ the weight of
a normalised, cuspidal Hecke eigenform g for SL2(Z), j > 0, k ≥ 3 integers
with j even. In many examples there appears to be a cuspidal Hecke
eigenform F , of weight Symj ⊗ detk for Sp2(Z), and a congruence λF (p) ≡
ap(g)+pk−2 +pj+k−1 (mod q), where q divides the numerator of a suitably
normalised Lalg(j+ k, g). Cases where such congruences have been verified
for p ≤ 37, using Hecke eigenvalue computations by Faber and van der Geer
[20], are described in [43]. The original example (k′, j, k, q) = (22, 4, 10, 41)
used by Harder to support his conjecture [24], has subsequently been proved
by Chenevier and Lannes [8, Chapter 10, Theorem* 4.4(1)].

One way of expressing the congruence is to say that L(s, F, Spin) is
congruent, coefficient by coefficient, to L(s, g)ζ(s−(k−2))ζ(s−(j+k−1)).
Then, with auxiliary f of weight `, L(s, f ⊗ F ) is congruent, coefficient by
coefficient, to L(s, f⊗g)L(s−(k−2), f)L(s−(j+k−1), f). Now if `/2 is odd
then the sign in the functional equation of L(s, f) is −1, so L(`/2, f) = 0
and the factor L(s− (j + k − 1), f) vanishes at s = (`/2) + j + k − 1. We
might then roughly expect Lalg((`/2) + j + k − 1, f ⊗ F ) to vanish mod q,

so to find q in the numerator of L((`/2)+j+k−1,f⊗F )
π8L((`/2)+j+k−3,f⊗F )

, which is the same as
L((j+2)/2,πf⊗πF )

π8L((j−2)/2,πf⊗πF )
. These will be critical values as long as we ensure that

` ≥ j + 4.
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Example 2. If (j, k) = (4, 15), so that k′ = 32, then the unique
(up to scaling) cusp form F of weight Sym4 ⊗ det15 appears to satisfy a
congruence as above mod q, with q | Lalg(19, g) a divisor of 61. (Note that
there are two conjugate choices for g and for q.) Now let f be the unique
normalised cusp form of weight ` = 18 for SL2(Z). We expect to find 61 in

the numerator of
L(3,πf⊗πF )

π8L(1,πf⊗πF )
.

In our numerical examples in §4, j > 0 and F is vector-valued. However,
in the case that j = 0 and F is scalar-valued, congruent mod q to the
Saito-Kurokawa lift of g, a formula of Saha, for the restriction to (Siegel)
H1 × H2 of a genus 3 Hermitian Eisenstein series (non-holomorphic and
non-convergent in our case), allows one to actually prove the expected
divisibility. This is in the recent Sheffield Ph.D. thesis of Rendina [35].

4. Computing the L-values

4.1. Generalities. The method for computing Hecke eigenvalues of genus
2 cusp forms F , hence coefficients of L(s, F, Spin), is described in [3, §7].
It was first carried out for p ≤ 37 by Faber and van der Geer [20], and
extended by the first-named author to obtain the first 180 coefficients in
the Dirichlet series. As described in those references, computing the pth
Dirichlet coefficient requires approximately p4 operations. Thus, computing
significantly more Dirichlet coefficients is not practical.

4.2. Computational results. Using the method described in Section 4.3,
we have experimentally determined the following expressions involving spe-
cial values.

Case 1: ` = 16, (j, k) = (4,12)

We have
π8L(3, πf ⊗ πF )

L(5, πf ⊗ πF )
=

72 · 17 · 839

23 · 32

and
π8L(1, πf ⊗ πF )

L(3, πf ⊗ πF )
=

34 · 7 · 112 · 71

22 · 5 · 17
.

The 839 is as predicted by Example 1 in §3.1. The 71 will be explained in
Example 3 in §6 below, as will the 17 in Example 5 in §7 below.

Case 2: ` = 18, (j, k) = (4,15)
We have

π8L(1, πf ⊗ πF )

L(3, πf ⊗ πF )
=

3 · 54 · 7 · 132 · 193

24 · 11 · 61
.

The 61 is as predicted by Example 2 in §3.2. For a comment on why we
are unable to account for the 193, see the end of Example 3 in §6.
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Case 3: ` = 16, (j, k) = (6,10)
We have

π8L(1, πf ⊗ πF )

L(3, πf ⊗ πF )
=

34 · 52 · 61

23
.

The 61 in the numerator will be revisited in Example 4 in §6 below.

4.3. Numerically evaluating L-functions. We describe the numerical
evaluation of the degree 8 L-function L(s, πf ⊗ πF ), using the case ` = 16,
(j, k) = (6, 10) as a representative example. We wish to evaluate that L-
function at s = 1 and s = 3 to high precision so as to confidently identify
a normalized ratio of those values as a rational number. (The meaning of
‘high precision’ depends on context. Here we will consider 30 digits to be
a reasonable target.)

First we explain why this requires some effort. It is straightforward to
make as many Dirichlet coefficients of L(s, πf ) as we wish, but for L(s, πF )
we have only the first 180 coefficients, so we have only the first 180 coeffi-
cients of L(s) := L(s, πf⊗πF ). As remarked in Section 4.1, it is prohibitive
to produce significantly more coefficients.

A common method of evaluating L-functions is to use the built-in func-
tionality of Magma [27]. Since the functional equation satisfied by this
L-function, in the unitary/analytic normalization, is

(4.1) Λ(s) := ΓC(s+ 19)ΓC(s+ 11)ΓC(s+ 4)2L(s) = Λ(1− s),

Magma can tell us how many coefficients are needed:

> L:=LSeries(1,[4,4,5,5,11,12,19,20],1,0: Sign:=1);

> N:=LCfRequired(L);N;

4145

Thus, more than 4000 coefficients are required for evaluating the L-function
using standard methods, but we only have 180. Instead, we will use the
methods of [21] to accurately evaluate the critical values using only the
available coefficients. We summarize the ideas as applied to this example.

High-precision evaluations of general L-functions use the so-called ap-
proximate functional equation (see [37] for details and technical conditions).
If L(s) =

∑
bnn
−s has an analytic continuation to an entire function that

satisfies the functional equation Λ(s) = G(s)L(s) = εΛ(1 − s), and g(s) is
a suitable auxiliary function, then

(4.2) L(s) =

∞∑
n=1

(h1(s, n) + εh2(1− s, n)) bn
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where

h1(s, n) := (g(s)G(s))−1 1

2πi

∫ ν+i∞

ν−i∞

g(s+ z)G(s+ z)

ns+z
dz

z

h2(1− s, n) := (g(s)G(s))−1 1

2πi

∫ ν+i∞

ν−i∞

g(1− s+ z)G(1− s+ z)

n1−s+z
dz

z
.

(4.3)

Here ν is any real number to the right of all poles of the integrand, and
g(s) is any entire function such that the integrals converge absolutely.

For this discussion, the important parameter is the test function g(s).
The idea is that we can evaluate (4.2) multiple times with different test
functions. Each evaluation provides slightly different information, which
we can combine to overcome the fact that we only have a few Dirichlet

coefficients. We will use test functions of the form g(s) = eiβs+αs
2

with
α > 0, or α = 0 and |β| < dπ4 , where d is the degree of the L-function (in
our example, d = 8).

If we insert a particular value for s, say s = 1, and let g(s) = eiβs+s
2/1000,

then (4.2) has the form

(4.4) Lβ(1) =
∞∑
n=1

cβ(n)bn,

where cβ(n) is a number which depends on β, n, and the parameters in
the functional equation. The Lβ(1) on the left side of (4.4) is independent
of β, but we use that notation to indicate which auxiliary function was
used on the right side. We can evaluate cβ(n) as accurately as we wish
by numerically evaluating the integrals that appear in (4.3), which we now
describe.

4.4. Numerically evaluating the integrals. This section is a summary
of material from [37]. Our goal here is to provide information for someone
to reproduce our calculation; our goal is not to provide a detailed exposition
on numerically approximating integrals.

We wish to numerically calculate, to high precision, the numbers cβ(n)
in (4.4). This involves evaluating an integral of a product of Γ-functions,
exponentials, and powers. This can be done using any computer algebra
package which contains those functions and which can work to arbitrary
precision; our computations were done in Mathematica [28].

The main issues involved are:

(1) Evaluating the integrand to sufficiently high precision,
(2) Truncating the improper integral, and
(3) Evaluating the resulting finite integral.
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For issue (1) the concern is possible loss of significant digits due to cata-
strophic cancellation. This is a minor issue in the case at hand, although
it becomes a serious problem when evaluating L-functions at s = σ + it
with t large (because the completed L-function Λ(s) is what is actually
being computed, and it decreases exponentially as a function of t). See
Section 3.3 of [37] for details.

In a system such as Mathematica, issue (1) is even less of a problem,
because the software keeps track of the precision of the calculation. Should
there be insufficient precision at the end, one merely re-calculates, begin-
ning with a larger precision.

As explained in Sections 2.4 and 3.6 of [37], these integrals can be evalu-
ated by a simple Riemann sum (i.e., a sum that evaluates the integrand at
equally spaced points). In particular, the step size is inversely proportional
to the number of digits of accuracy in the result. That addresses issue (3),
and since the integrand is decreasing exponentially, also issue (2).

4.5. A numerical example. We will evaluate (4.4) with β = 0. We set
ν = 3, a stepsize of 1/5 in the Riemann sum, summing from -29 to 29, and
evaluate the integrand to 40 digits of precision. We find:

L0(1) =1.245 b1 + 0.534 b2 + 0.269 b3 + · · ·+ 0.000668 b17

+ · · ·+ 2.10× 10−10 b101 + · · ·+ 8.56× 10−14 b181

+ · · ·+ 1.1× 10−21 b499 + · · ·+ 5.5× 10−29 b1009

+ · · ·+ 7.3× 10−34 b1499 + · · ·+ 8.3× 10−38 b1999

+ · · ·+ 6.7× 10−53 b4999 + · · · .(4.5)

One sees immediately that using 180 terms gives an error of more than
10−13, which is far from our goal of 30 decimal digits. Note that the numer-
ical values in (4.5), and in all following equations, are truncations of the
actual value. For example, the actual computed coefficient of b1 in (4.5) is

1.2453392504912166301069081878583745765950,

for which Mathematica reports an accuracy of 37 digits.
While (4.5) makes it appear that Magma’s estimate of 4000 terms is

conservative, this is partially explained by the fact that we are evaluating
at the point s = 1. If we wanted to calculate L(1

2 + 100i) then many more
terms would be needed. Nevertheless, we see that 180 terms, or even 1000
terms, are not adequate for the high precision evaluation we seek.

As we will explain in Section 4.6, we can achieve high precision by eval-
uating the L-function several times, and then taking a linear combination
of those evaluations. Thus, we need to evaluate (4.4) for other values of β,
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say β = 3
2 :

L 3
2
(1) = 1.870 b1 + 0.937 b2 + 0.017 b3 + · · ·+ 0.0097 b17

+ · · · − 2.10× 10−8 b101 + · · · − 9.44× 10−12 b181

+ · · ·+ 4.6× 10−19 b499 + · · ·+ 4.7× 10−25 b1009

+ · · ·+ 1.3× 10−29 b1499 + · · · − 4.2× 10−33 b1999

+ · · ·+ 5.2× 10−47 b4999 + · · · .(4.6)

The choice of β = 3
2 seems worse, because the contributions of the coef-

ficients are decreasing less rapidly, so more terms will be required in order
to obtain a given precision. This is indeed true, for among test functions
of this form, β = 0 has the contributions decreasing most rapidly.

From (4.5) or (4.6) we can determine a value for L(1) by using the known
coefficients and estimating the others with the Ramanujan bound |bp| ≤ 8.
Note that the known coefficients include not only bn for n ≤ 180, but also
some larger numbers such as b875 = b7b125. For β = 0 we find

L0(1) = 1.798902826118503606167865 + 8.56× 10−14 b181

+ 3.81× 10−14 b191 + 3.25× 10−14 b193 + 2.37× 10−14 b197

+ · · ·+ 1.1× 10−21 b499 + · · ·+ 5.5× 10−29 b1009

+ · · ·+ 7.3× 10−34 b1499 + · · ·+ 8.3× 10−38 b1999

+ · · ·+ 6.7× 10−53 b4999 + · · ·
= 1.798902826118503± 1.8× 10−12,(4.7)

and for β = 3
2 :

L 3
2
(1) = 1.798902826123555372082651 + 9.44× 10−12 b181

+ 9.42× 10−12 b191 + 8.85× 10−12 b193 + 7.54× 10−12 b197

+ · · ·+ 4.6× 10−19 b499 + · · ·+ 4.7× 10−25 b1009

+ · · ·+ 1.3× 10−29 b1499 + · · ·+ 4.2× 10−33 b1999

+ · · ·+ 5.2× 10−47b4999 + · · ·
= 1.7989028261235± 5.5× 10−10.(4.8)

Those values are far from our goal of 30 decimal digits of accuracy.
In (4.7) and (4.8), and below, the expression a = b ± c means that the

true value of a lies in the interval (b − c, b + c). To estimate the error, we
used the first 20, 000 Dirichlet coefficients.

4.6. Averaging is better. In this section we use the main idea of [21],
which is that one can obtain a more precise evaluation of L(1) by combining
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Lβ(1) for several auxiliary functions. That is, if

(4.9)
∑

wj = 1,

then

(4.10) L(1) =
∑

wjLβj (1).

As we will see, suitable choices of wj and βj in (4.10) will give a value of
L(1) with a small error term. For example, consider

{βj} = {0, 1
2 , 1, 3

2}
(4.11)

{wj} = {5.595844269, −5.074113323, 0.484231975, −0.0059629212}.

The “magic numbers” in (4.11) were chosen (using a least-squares fit) to
minimize the contribution of b181, b191, . . . in (4.12) below.

Using those values for wj and βj , we find:

L(1) =
∑

wjLβj (1)

= 1.798902826118603393418629 + 1.34× 10−17 b181

+ 4.96× 10−18 b191 + 3.49× 10−17 b193 + 5.01× 10−17 b197

+ · · ·+ 1.1× 10−20 b499 + · · ·+ 1.9× 10−27 b1009

+ · · ·+ 9.4× 10−32 b1499 + · · ·+ 3.1× 10−35 b1999

+ · · · − 3.1× 10−49 b4999 + · · ·
= 1.79890282611860339± 3× 10−14.(4.12)

The error in (4.12) compared to (4.7) and (4.8) should be somewhat sur-
prising. The error has decreased by a factor of 60 by combining only 4
evaluations of L(1). Suppose that, instead, we wanted to improve the error
in (4.7) by determining more coefficients. We would need to determine the
value of bp for the 11 primes 181 ≤ p ≤ 239 in order to have a comparable
decrease in the error term.

The improved error in (4.12) indicates that the contributions from the
unknown coefficients, for different auxiliary functions, are negatively corre-
lated. The exact nature of this correlation has not been described analyti-
cally: we take it as an empirical fact.

By combining the evaluation of Lβ(1) for β ∈ {0, 1/10, 2/10, . . . , 30/10},
with suitably chosen (by least-squares) “weights” {w0, w1, . . . , w30}, we find

(4.13) L(1) = 1.798902826118603032455722772619± 6× 10−26

and in the same way,

(4.14) L(3) = 1.105456887951321630369359341690± 3× 10−27.
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Thus

π8L(1)

L(3)
= 15440.62500000000000000000000096± 6× 10−22

=
34 · 52 · 61

23
± 6× 10−22.(4.15)

This precision of 27 digits does not quite meet our goal of 30 digits of accu-
racy in the final result, but the identification of π8L(1)/L(3) as a rational
number seems convincing. Similar calculations produced the other values
in Section 4.2.

Note that this approach to evaluating L-functions requires significantly
more computation than the methods used when more coefficients are known.
With known coefficients, the sum in (4.2) and the integrals in (4.3) can be
interchanged, so only two integrals need to be computed numerically. For
the above calculation, it was necessary to compute each of the thousands of
integrals separately. Furthermore, those integrals were computed multiple
times: once for each different auxiliary function. Only after evaluating all
those integrals could we optimally combine them to minimize the contri-
butions of the unknown coefficients. If the appropriate combinations could
somehow be determined in advance, our ability to evaluate higher-degree
L-functions would be substantially improved.

5. Expected consequences of congruences revisited: the
Bloch-Kato conjecture

5.1. Statement of the conjecture. Recall the rank-8 motive M = Mf⊗
MF such that L(M, s) = L(f ⊗ F, s). (We shall assume at least the ex-
istence of a premotivic structure comprising realisations and comparison
isomorphisms, as defined in [14, 1.1.1].) In our examples the coefficient
field is Q. Let q > j + 2k+ `− 3 be a prime number. Choose a Z(q)-lattice
TB in the Betti realisation MB in such a way that Tq := TB ⊗ Zq is a

Gal(Q/Q)-invariant lattice in the q-adic realisation Mq, via the comparison
isomorphism MB ⊗ Qq ' Mq. Then choose a Z(q)-lattice TdR in the de
Rham realisation MdR in such a way that

V(TdR ⊗ Zq) = Tq

as Gal(Qq/Qq)-representations, where V is the version of the Fontaine-
Lafaille functor used in [14]. Since V only applies to filtered φ-modules,
where φ is the crystalline Frobenius, TdR ⊗ Zq must be φ-stable. Anyway,
this choice ensures that the q-part of the Tamagawa factor at q is trivial (by
[5, Theorem 4.1(iii)]), thus simplifying the Bloch-Kato conjecture below.
The condition q > j + 2k + ` − 3 ensures that the condition (*) in [5,
Theorem 4.1(iii)] holds.
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Let t be a critical point at which we evaluate the L-function. Let M(t)
be the corresponding Tate twist of the motive. Let Ω(t) be a Deligne
period scaled according to the above choice, i.e. the determinant of the
isomorphism

M(t)+
B ⊗ C ' (M(t)dR/Fil0)⊗ C,

calculated with respect to bases of (2πi)tT
(−1)t

B and TdR/Filt, so well-defined

up to Z×(q).
The following formulation of the (q-part of the) Bloch-Kato conjecture,

as applied to this situation, is based on [14, (59)] (where Σ was non-empty,
though), using the exact sequence in their Lemma 2.1.

Conjecture 5.1 (Bloch-Kato).

ordq

(
L(M, t)

Ω(t)

)
= ordq

(
#H1

f (Q, T ∗q (1− t)⊗ (Qq/Zq))
#H0(Q, T ∗q (1− t)⊗ (Qq/Zq))#H0(Q, Tq(t)⊗ (Qq/Zq))

)
.

Here, T ∗q = HomZq(Tq,Zq), with the dual action of Gal(Q/Q). This is an
invariant Zq-lattice in M∗q 'Mq(j + 2k+ `− 4), so T ∗q (1− t) is a lattice in
Mq(j+2k+`−3− t). On the right hand side, in the numerator, is a Bloch-
Kato Selmer group with local conditions (unramified at p 6= q, crystalline
at p = q) for all finite primes p.

5.2. Global torsion and Kurokawa-Mizumoto type congruences.
We revisit the situation of §3.1. Recall that λF (p) denotes the eigenvalue of
the genus-2 Hecke operator T (p) acting on the cuspidal eigenform F . The
q-adic realisations Mf,q and MF,q should be 2-and 4-dimensional Qq vector

spaces with continuous linear actions ρf , ρF of Gal(Q/Q), crystalline at q,
unramified at all primes p 6= q. For primes p 6= q, we should have

ap(f) = Tr(ρf (Frob−1
p )) and λF (p) = Tr(ρF (Frob−1

p )).

Galois representations with these properties are known to exist, by the-
orems of Deligne and Weissauer [13, 44]. By Poincaré duality, M∗f,q '
Mf,q(` − 1) and M∗F,q ' MF,q(j + 2k − 3). Choosing Gal(Q/Q)-invariant
Zq-lattices in Mf,q and MF,q, then reducing mod q, we obtain residual
representations ρf and ρF . We suppose that (as in Example 1) ρf is irre-
ducible, in which case it is independent of the choice of lattice in Mf,q. The
congruence

λF (p) ≡ ap(f)(1 + pk−2) (mod q),

interpreted as a congruence of traces of Frobenius, implies that the compo-
sition factors of ρF are ρf and ρf (2− k). Which is a submodule and which
is a quotient will depend on the choice of lattice in MF,q.
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Looking at the denominator of the Bloch-Kato formula, with Tq the

tensor product of the Zq-lattices referred to above, on which Gal(Q/Q)
acts by ρf ⊗ ρF ' ρ∗f (1− `)⊗ ρF , the q-torsion in H0(Q, Tq(t)⊗ (Qq/Zq))
is (ρ∗f ⊗ ρF (t+ 1− `))Gal(Q/Q), which is HomFq [Gal(Q/Q)](ρf , ρF (t+ 1− `)).
Recalling that ` = j+k, this is the same as HomFq [Gal(Q/Q)](ρf (2−k), ρF (t+

3− j − 2k)). This can be non-trivial only for t ≡ `− 1 (mod q − 1) (if ρf
is a submodule of ρF ) or for t ≡ j + 2k − 3 (mod q − 1) (if ρf (2 − k) is a
submodule of ρF ). The only such t in the critical range ` ≤ t ≤ j + 2k − 3
(using q > j + 2k + ` − 4 from §5.1, or even just q > 2` from §3.1) is
t = j + 2k − 3. So, with a suitable choice of lattice, and t = j + 2k − 3,
we can have a factor of q in the denominator of the conjectural formula

for L(M,t)
Ω(t) , which appears to provide some explanation for the q in the

denominator of L(j+2k−3,f⊗F )
π8L(j+2k−5,f⊗F )

, observed in Example 1.

Note that the factor L(s − (k − 2), Sym2f) in the expression in §3.1
for L(f ⊗ [f ]j) has trivial zeros at the points s = `, ` + 2 paired with
s = j + 2k − 3, j + 2k − 5 by the functional equation. This is because
`− (k − 2) = j + 2 and `+ 2− (k − 2) = j + 4, which are even and in the
range 1 ≤ t ≤ `−1, at least if k > 4. This suggests that the orders of Selmer
groups may contribute cancelling factors of q to the numerators of Lalg(j+
2k−3, f⊗F ) and Lalg(j+2k−5, f⊗F ), something we overlooked in the final
paragraph of [18, §4.2]. Note also that one can make a similar construction
of global torsion elements with respect to congruences of “Yoshida type”
(which appear in [4, Conjecture 10.7]), but in that case there are no critical
L-values.

5.3. Moving between Selmer groups via Harder type congru-
ences. Now we revisit the situation of §3.2. There t = (`/2) + j + k − 1,
and T ∗q (1 − t) is a lattice in Mq(j + 2k + ` − 3 − t) = Mq((`/2) + k − 2).
By an analogue of the Birch and Swinnerton-Dyer conjecture, vanishing
of L(f, `/2) should suffice for the non-triviality of H1

f (Q,Mf,q(`/2)) (again

defined using local conditions). (See the “conjectures” Cr(M) in §1 of [22],
and Ciλ(M) in §6.5 of [22].) The sign in the functional equation of L(f, s)

is (−1)`/2 = −1, so the parity of the order of vanishing at s = `/2 is odd.
Assuming that ρf is irreducible, the conditions of [34, Theorem B] are sat-

isfied. Hence H1
f (Q,Mf,q(`/2)) is non-trivial (because the parity of its rank

is also odd). If we were to impose a condition that f is ordinary at q (i.e.
q - aq(f)), then we could alternatively get this from either [41, Théorème
A] or the main theorem of [33, §12].

Anyway, from this one easily obtains a non-zero element

c′′ ∈ H1(Q, ρf (`/2)).



GL2 ×GSp2 L-values and Hecke eigenvalue congruences 17

Assuming irreducibility of ρf , it is a consequence of Harder’s conjectured
congruence that the composition factors of ρF are ρg, Fq(2−k) and Fq(1−
j − k). If we choose the Gal(Q/Q)-invariant Zq-lattice in MF,q in such
a way that the composition factor Fq(2 − k) of ρF is a submodule, then
ρf (2 − k) is a submodule of ρf ⊗ ρF , so ρf (`/2) is a submodule of ρf ⊗
ρF ((`/2) + k − 2). Thus we may map c′′ to H1(Q, ρf ⊗ ρF ((`/2) + k − 2)),

thence to H1(Q, T ∗q (1−t)⊗(Qq/Zq)). Assuming that ρf 6' ρg (e.g. if ` 6= k′

and q > max{`, k′}) one easily checks that H0(Q, ρf ⊗ ρF ((`/2) + k − 2))
is trivial, from which it follows that this produces a non-zero element of
H1(Q, T ∗q (1− t)⊗ (Qq/Zq)). If q > j + 2k + `− 3 one can in fact show, as

in the proof of [19, Proposition 5.1], that this element is in H1
f (Q, T ∗q (1 −

t)⊗ (Qq/Zq)). This puts a factor of q in the numerator of the conjectural

formula for L(M,t)
Ω(t) , which appears to provide some explanation for the q in

the numerator of L((`/2)+j+k−1,f⊗F )
π8L((`/2)+j+k−3,f⊗F )

, observed in Example 2.

Analogous situations were already considered in [17, §8,§11,§14] and [19,
Conjecture 5.4, Corollary 8.6].

6. Endoscopic congruences for SO(7).

Example 3. Recall that when ` = 16 and (j, k) = (4, 12), we found an
apparent factor of 71 in the numerator of

π8L(1, πf ⊗ πF )

L(3, πf ⊗ πF )
=
π8L((`+ j + 2k − 2)/2, f ⊗ F )

L((`+ j + 2k + 2)/2, f ⊗ F )
.

With q = 71 and t = (`+ j+2k−2)/2 (which is the integer immediately to
the right of the centre of the functional equation), we would like to construct
a non-zero element in H1

f (Q, T ∗q (1 − t) ⊗ (Qq/Zq)) to explain this. The q-

torsion in T ∗q (1− t)⊗(Qq/Zq) is (the space of) ρf ⊗ρF ((`+j+2k−4)/2) '
HomFq(ρf ((` + 2 − j − 2k)/2), ρF ), using ρ∗f ' ρf (` − 1). Note that the

Hodge type of Mf ((`+ 2− j − 2k)/2) is {((j + 2k − `− 2)/2, `− 1 + (j +
2k − ` − 2)/2), (` − 1 + (j + 2k − ` − 2)/2, (j + 2k − ` − 2)/2)}, which
is {(5, 20), (20, 5)} in this case, and the effect of the twist is to make the
“weight” w =“p+q”= `−1+(j+2k−`−2) = j+2k−3, equal to that of the
Hodge type {(0, j+2k−3), (k−2, j+k−1), (j+k−1, k−2), (j+2k−3, 0)}
of MF , which is {(0, 25), (10, 15), (15, 10), (25, 0)} in this case. This raises
the possibility that ρf ((`+2−j−2k)/2) = ρf (−5) and ρF could both occur
as composition factors in the reduction mod q of an invariant Zq-lattice in
a 6-dimensional Galois representation coming from the q-adic realisation of
a rank 6 motive, pure of weight j + 2k − 3, with Hodge type the union of
those of Mf ((`+ 2− j − 2k)/2) and MF .
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If such a 6-dimensional q-adic Galois representation ρ̃ exists, and if it is
irreducible, then adapting a well-known construction of Ribet [36], there ex-
ists an invariant Zq-lattice whose reduction mod q is a non-trivial extension
of ρf ((`+2−j−2k)/2) by ρF (both of which we suppose to be irreducible).

This gives a non-zero element in H1(Q,HomFq(ρf ((`+ 2− j− 2k)/2), ρF )).

Since H0(Q,HomFq(ρf ((`+ 2− j− 2k)/2), ρF )) is trivial, the image of this

element in H1(Q, T ∗q (1− t)⊗ (Qq/Zq)) is non-zero. If we also suppose that
ρ̃ is unramified at all p 6= q, crystalline at q, then one can show (using
q > (3j + 6k + `− 8)/2) that it lies in fact in H1

f (Q, T ∗q (1− t)⊗ (Qq/Zq)),
as desired. It remains to explain where ρ̃ comes from.

Given a self-dual, cuspidal, automorphic representation π of GL6(A),
there is an associated ρ̃ : Gal(Q/Q) → GL6(Qq) (see [40, Remark 7.6]). If
π is unramified at all finite places then ρ̃ is unramified at all p 6= q and
crystalline at q. It is not currently known to be irreducible, but we shall
assume that, as expected, it is, so that the above construction applies. The
infinitesimal character of π∞ determines the Hodge-Type of the conjectural
motive of which ρ̃ should be the q-adic realisation [11] (and the Hodge-Tate
weights of ρ̃|Gal(Qq/Qq)). A self-dual, cuspidal automorphic representation

of PGL6(A) discovered by Chenevier and Renard, denoted ∆25,15,5 in [9,
Table 13], has the correct infinitesimal character. By Arthur’s symplectic-
orthogonal alternative [9, Theorem* 3.9], it is the functorial lift of a discrete
automorphic representation of SO(4, 3)(A).

Let SO(7) be the special orthogonal group of the E7 root lattice, the
even, positive-definite lattice of discriminant 2, unique up to isomorphism.
This is a semi-simple group over Z, and SO(7)(Z) ' W (E7)+, the even
subgroup of the Weyl group, of order 1451520. For µ = a1e1 + a2e2 + a3e3

(in the notation of [9, 5.2]), with a1, a2, a3 ∈ Z and a1 ≥ a2 ≥ a3 ≥ 0,
let Vµ be the space of the complex representation θµ of SO(7) with highest
weight µ, and let ρ := 5

2e1 + 3
2e2 + 1

2e3. The infinitesimal character of
the representation θµ of SO(7)(R) is µ + ρ. Let K be the open compact
subgroup

∏
p SO(7)(Zp) of SO(7)(Af ), and let

M(Vµ,K) := {f : SO(7)(Af )→ Vµ : f(gk) = f(g) ∀k ∈ K,
f(γg) = θµ(γ)(f(g)) ∀γ ∈ SO(7)(Q)}

be the space of Vµ-valued algebraic modular forms with level K (i.e. “level
1”), where Af is the “finite” part of the adele ring. Since

#(SO(7)(Q)\SO(7)(Af )/K) = 1,

M(Vµ,K) can be identified with the fixed subspace V
SO(7)(Z)
µ .

If we let µ = 10e1+6e2+2e3, so that µ+ρ = (1/2)(25e1+15e2+5e3), then
M(Vµ,K) is 2-dimensional, spanned by K-fixed vectors of automorphic
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representations of SO(7)(A) whose Arthur parameters are ∆25,15,5 and an
endoscopic lift denoted ∆25,5 ⊕ ∆15 in [9, Table 13]. Note that (25, 5) =
(j + 2k − 3, j + 1) and 15 = ` − 1, with (j, k) = (4, 12) and ` = 16.
Mégarbané has calculated the traces of certain Hecke operators T (p) (for
p ≤ 53) on spaces including this one [31]. The contribution p5ap(f)+λF (p)
from ∆25,5 ⊕∆15 is easily subtracted off (as below) to find the eigenvalue
denoted T (p)(∆25,15,5), in fact Mégarbané has recorded the results in [30,
Tables 2,4,5,6]. A congruence of Hecke eigenvalues

T (p)(∆25,15,5) ≡ p5ap(f) + λF (p) (mod 71)

for all primes p would, viewing them as traces of Frobenius, imply that ρ̃
has composition factors ρf ((` + 2 − j − 2k)/2) and ρF , which is what we
need. We confirmed this congruence for all p ≤ 53. In the tables below, we
show the results for 2 ≤ p ≤ 11 and p = 53.

p ap(f) λF (p) Tr(T (p)|V SO(7)(Z)
µ )

2 216 −96 6816
3 −3348 −527688 −474120
5 52110 596139180 145932324
7 2822456 −3608884496 49205357040
11 20586852 3047542095144 3229012641000
53 6797151655902 −3921035060705523617268 −8934610079

5036491708

p T (p)(∆25,15,5) −T (p)(∆25,15,5) + p5ap(f) + λF (p)
2 0 25.3.71
3 867132 −27.35.71
5 −613050606 29.3.23.71.547
7 5377223544 28.34.72.13.41.71
11 −3134062555596 27.3.23.71.15145211
53 989150772174783875874 −29.33.71.73.1031.27990002153

Recall from §4.2 that when ` = 18 and (j, k) = (4, 15), we see a factor of

193 in the numerator of
π8L(1,πf⊗πF )
L(3,πf⊗πF ) . Were we to try to account for this in

a similar manner, we would have to look at µ+ρ = (1/2)(31e1 +17e2 +5e3),
in which case M(Vµ,K) is 8-dimensional and ∆31,17,5 is not unique (using
[10]). Hence we cannot extract Hecke eigenvalues from traces of Hecke
operators in the same way, so are unable to test the expected mod 193
congruence.
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Example 4. Recall that when ` = 16 and (j, k) = (6, 10), we found an
apparent factor of 61 in the numerator of

π8L(1, πf ⊗ πF )

L(3, πf ⊗ πF )
=
π8L((`+ j + 2k − 2)/2, f ⊗ F )

L((`+ j + 2k + 2)/2, f ⊗ F )
.

In the same way as for the previous example, this could be explained by
a certain mod 61 congruence of Hecke eigenvalues of algebraic modular
forms for SO(7), this time with µ = 9e1 + 6e2 + 3e3. We have again used
Mégarbané’s data to verify the congruence for p ≤ 53. Similarly, it is
necessary to subtract from the trace a contribution from ∆23,7 ⊕ ∆15, to
get the Hecke eigenvalue for ∆23,15,7.

p λF (p) Tr(T (p)|V SO(7)(Z)
µ )

2 1680 4416
3 −6120 148104
5 2718300 −89271276
7 6916898800 10652657232
11 −1417797110136 −764339838888
53 −15111411349636553220 86535126376033794804

p T (p)(∆23,15,7) −T (p)(∆23,15,7) + p4ap(f) + λF (p)
2 −720 25.3.61
3 425412 −28.32.5.61
5 −124558326 210.3.61.853
7 −3040958424 29.37.5.72.61
11 352045171116 −28.3.5.72.31.61.4127
53 48013741730657079162 −210.33.5.17.61.66215793179

In fact, Mégarbané has very recently proved this congruence uncondi-
tionally for all p [29, Théorème 1.0.3(x)]. He uses scalar-valued algebraic
modular forms for SO(25), in the manner of Chenevier and Lannes’s proof of
Harder’s mod 41 congruence using O(24) [8, Chapter 10, Theorem* 4.4(1)].
He found that the modulus of the congruence is in fact 5856 = 25.3.61.

7. An Eisenstein congruence for SO(9).

Example 5. Recall that when ` = 16 and (j, k) = (4, 12), we found an
apparent factor of 17 in the denominator of

π8L(1, πf ⊗ πF )

L(3, πf ⊗ πF )
=
π8L((`+ j + 2k − 2)/2, f ⊗ F )

L((`+ j + 2k + 2)/2, f ⊗ F )
,

and in the numerator of
π8L(3,πf⊗πF )
L(5,πf⊗πF ) , so apparently in the numerator of

Lalg((` + j + 2k + 2)/2, f ⊗ F ). With q = 17 and t = (` + j + 2k + 2)/2
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(which is no longer immediately to the right of the centre of the functional
equation), we would like to construct a non-zero element in H1

f (Q, T ∗q (1−
t)⊗ (Qq/Zq)) to try to explain this, though the condition q > j+ 2k+ `−3
does not hold here. The q-torsion in T ∗q (1− t)⊗ (Qq/Zq) is (the space of)
ρf ⊗ ρF ((` + j + 2k − 8)/2) ' HomFq(ρf ((` + 6 − j − 2k)/2), ρF ), using
ρ∗f ' ρf (`− 1).

We would like to see ρf ((` + 6 − j − 2k)/2) = ρf (−3) and ρF both
occurring as composition factors in the reduction mod q of an invari-
ant Zq-lattice in a 6-dimensional Galois representation coming from the
q-adic realisation of a rank 6 motive. Then we could apply the con-
struction of Ribet again (though q is not large enough now for us to
prove the local condition at q). The problem is, MF still has Hodge type
{(0, 25), (10, 15), (15, 10), (25, 0)}, of weight 25, while the Hodge type of
Mf (−3) is {(3, 18), (18, 3)}, of weight only 21. What we need to do is to bal-
ance ρf (−3) with another composition factor ρf (−7), noting that the Hodge
type of Mf (−7) is {(7, 22), (22, 7)}, and 3+22 = 7+18 = 25. Now ρf (−3),
ρf (−7) and ρF could all occur as composition factors in the reduction mod
q of an invariant Zq-lattice in an 8-dimensional Galois representation com-
ing from the q-adic realisation of a rank 8 motive, pure of weight 25, with
Hodge type {(0, 25), (3, 22), (7, 18), (10, 15), (15, 10), (18, 7), (22, 3), (25, 0)}.
Although this is not the union of the Hodge types of Mf (−3),Mf (−7) and
MF , the union of the sets of Hodge-Tate weights of their q-adic realisations
restricted to Gal(Qq/Qq) is {0, 3, 7, 10, 15, 18, 22, 25}.

This time a self-dual, cuspidal, automorphic representation of PGL8(A)
discovered by Chenevier and Renard [9, Corollary**6.5, Table 8], denoted
∆25,19,11,5 in their notation, has the correct infinitesimal character. By
Arthur’s symplectic-orthogonal alternative [9, Theorem* 3.9], it is the func-
torial lift of a discrete automorphic representation of SO(5, 4)(A). Again,
there is an associated ρ̃ : Gal(Q/Q) → GL8(Qq) (see [40, Remark 7.6]).
The relevant space of algebraic modular forms for SO(9) is 3-dimensional,
spanned by Hecke eigenforms that are vectors in automorphic representa-
tions of SO(9)(A) with Arthur parameters ∆25,19,11,5 and ∆2

25,19,5 ⊕ ∆11,

[30, Table 1]. Here ∆2
25,19,5 stands for a pair of self-dual, cuspidal, au-

tomorphic representations of PGL6(A), and ∆2
25,19,5 ⊕ ∆11 for a pair of

endoscopic lifts. To get the Hecke eigenvalues we want, for ∆25,19,11,5, one
must subtract the endoscopic contributions from the traces computed by
Mégarbané for p ≤ 7 [31]. Also, computing the trace of the SO(7) T (p) on
∆2

25,19,5 similarly requires the subtraction of an endoscopic contribution by
∆25,5⊕∆19 from a trace on a whole space of algebraic modular forms. One
can obtain the T (p)(∆25,19,11,5) directly from [30, Table 7].

The congruence verified in the second table for p ≤ 7, if it held for
all p, would imply that (with q = 17) ρ̃ has composition factors ρf (−3),
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ρf (−7) and ρF . Note that ρf is certainly irreducible, by [42, Corollary to
Theorem 4], and the irreducibility of ρF can presumably be checked as in
[8, Proposition 4.10]. This congruence (disregarding the smallness of q) is
an instance of the kind considered in [2], in the case G = SO(5, 4). The
expression (p3+p7)ap(f)+λF (p) is the eigenvalue of T (p) on an automorphic
representation of G(A) induced from a maximal parabolic subgroup with
Levi subgroup M ' GL(2) × SO(3, 2). (Harder’s congruences above are a
different instance, as explained in [2, §7] and [3, §3.2].)

p Tr(T (p)|V SO(7)(Z)
µ ) λF (p) = T (p)(∆19) Tr(T (p))(∆2

25,19,5)
T (p)(∆25,5)

2 10176 −96 456 6624
3 929988 −527688 50652 90072
5 −36016170 596139180 −2377410 −334979100
7 −40517568504 −3608884496 −16917544 −31105966416

p Tr(T (p)|V SO(9)(Z)
µ′ ) T (p)(∆25,19,11,5) −T (p)(∆25,19,11,5)

+(p3 + p7)ap(f) + λF (p)
2 5280 4800 25.32.5.17
3 889920 −302400 −28.33.5.13.17
5 −345413400 −765121800 210.32.5.17.53.131
7 −29042227200 29642547200 29.33.5.7.17.191.1459

8. An endoscopic congruence for SO(9).

Example 6. Now consider a self-dual, cuspidal, automorphic represen-
tation of PGL8(A) discovered by Chenevier and Renard [9, Corollary**6.5,
Table 8], denoted ∆25,21,15,9 in their notation. By Arthur’s symplectic-
orthogonal alternative [9, Theorem* 3.9], it is the functorial lift of a dis-
crete automorphic representation of SO(5, 4)(A). There is an associated
ρ̃ : Gal(Q/Q) → GL8(Qq) (see [40, Remark 7.6]). The relevant space
of algebraic modular forms for SO(9) is 3-dimensional, spanned by Hecke
eigenforms that are vectors in automorphic representations of SO(9)(A)
with Arthur parameters ∆25,21,15,9, ∆25 ⊕∆15 ⊕∆21,9 and ∆21,9 ⊕∆25,15

[30, Table 1]. To get the Hecke eigenvalues we want, for ∆25,19,11,5, one
must subtract the endoscopic contributions from the traces calculated by
Mégarbané for p ≤ 7, in fact he has done that and listed the results in [30,
Table 7]. Here F and G are genus 2 cuspidal, Hecke eigenforms for Sp2(Z),
with (j, k) = (8, 8) and (14, 7) respectively.
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p T (p)(∆25,21,15,9) λF (p) := T (p)(∆21,9) λG(p) := T (p)(∆25,15)
2 −7200 1344 −3696
3 631200 −6408 511272
5 6175800 −30774900 118996620
7 25981995200 451366384 −82574511536

p p2λF (p) + λG(p)− T (p)(∆25,21,15,9)
2 24.3.5.37
3 −26.3.52.37
5 −28.3.5.37.4621
7 −27.33.5.37.135197

The congruence verified in the second table for p ≤ 7, if it held for all
p, would imply that (with q = 37) ρ̃ has composition factors ρF (−2) and
ρG. The irreducibility of ρF and ρG can presumably be checked as in [8,
Proposition 4.10]. Now reasoning as in Example 3, but in the opposite
direction, we should expect to find the prime factor 37 in the numerator

of π8 L(1,πF⊗πG)
L(2,πF⊗πG) , a ratio of critical values for a degree-16 GSp2 × GSp2

L-function. (As was pointed out to us by M. Watkins, L(3, πF ⊗πG) is not
critical.) Using the same techniques as in §4, we obtain the approximation

π8 L(1,πF⊗πG)
L(2,πF⊗πG) ≈ 6243.7501, likely to be correct to 7 or 8 significant figures.

This approximation is not as accurate as what we obtained in our degree 8

examples, but we note that 6243.75 = 33·52·37
22

. This is suggestive of the
expected prime factor of 37. However, this evidence is not as convincing
as, for example, equation (4.15).

Though it was the narrowness of the critical range that forced evaluation
of the L-function at adjacent points, doing so had a fortuitous side-benefit.

The quantity π8 L(1,πF⊗πG)
L(2,πF⊗πG) is small enough that 7 or 8 significant figures are

enough to go comfortably beyond approximating just the integer part, and
to reveal what is presumably the correct rational number. This would not

have been the case for the much larger π16 L(1,πF⊗πG)
L(3,πF⊗πG) , even had L(3, πF ⊗

πG) been critical.
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[30] T. Mégarbané, “Traces des opérators de Hecke sur les espaces de formes automorphes de

SO7, SO8 ou SO9 en niveau 1 et poids arbitraire”, J. Théor. Nombres Bordeaux 30 (2018),
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